• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The effect of isometric contraction on the regulation of force tremor in the contralateral limb

    Author(s)
    Kenway, Leanne C
    Bisset, Leanne M
    Kavanagh, Justin J
    Griffith University Author(s)
    Kavanagh, Justin J.
    Bisset, Leanne M.
    Kenway, Leanne C.
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    This study examined how regulating force tremor in a single limb is altered when the opposite limb is actively engaged in a force generating task. Index finger abduction force and first dorsal interosseous (FDI) activity were assessed in thirteen healthy subjects, at target forces from 5% to 60% MVC for the non-dominant limb (unilateral task), and again when the dominant limb simultaneously generated a submaximal abduction force (bilateral task). When the non-dominant limb generated force at 20% MVC, tremor was greater during the bilateral task compared with the unilateral task; a finding reflected in the amplitude of peak ...
    View more >
    This study examined how regulating force tremor in a single limb is altered when the opposite limb is actively engaged in a force generating task. Index finger abduction force and first dorsal interosseous (FDI) activity were assessed in thirteen healthy subjects, at target forces from 5% to 60% MVC for the non-dominant limb (unilateral task), and again when the dominant limb simultaneously generated a submaximal abduction force (bilateral task). When the non-dominant limb generated force at 20% MVC, tremor was greater during the bilateral task compared with the unilateral task; a finding reflected in the amplitude of peak power of force. Bilateral responses were also examined during a prolonged 60% MVC unilateral contraction. Force tremor and muscle activity amplitude increased while the frequency of activity decreased for the contracting limb. Additionally, force tremor significantly decreased towards the end of the prolonged contraction in the contralateral limb. Overall, it appears that the process of performing isometric contractions invokes tremor-related changes in the opposite limb at selective force targets, and performing prolonged unilateral contractions invokes tremor-related changes in the opposite limb when it is at rest.
    View less >
    Journal Title
    Neuroscience Letters
    Volume
    558
    DOI
    https://doi.org/10.1016/j.neulet.2013.11.013
    Subject
    Central Nervous System
    Neurosciences
    Psychology
    Cognitive Sciences
    Publication URI
    http://hdl.handle.net/10072/62071
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander