A micro optofluidic lens with short focal length

View/ Open
Author(s)
Song, Chaolong
Nguyen, Nam-Trung
Tan, Say-Hwa
Asundi, Anand Krishna
Year published
2009
Metadata
Show full item recordAbstract
A micro optofluidic lens is formed by laminar streams of immiscible liquids with different refractive indices. This paper reports modelling and characterization for a new design of a micro optofluidic lens. The lens has a circular chamber allowing the formation of interfaces with a perfect arc shape. The inlet and the outlet of the lens chamber are placed with an offset to the chamber axis to achieve a radius of curvature smaller than the limiting chamber radius. A model mathematically predicts the relationship between the flow rate ratio and the curvature of the interface and the resulting focal length. The device was ...
View more >A micro optofluidic lens is formed by laminar streams of immiscible liquids with different refractive indices. This paper reports modelling and characterization for a new design of a micro optofluidic lens. The lens has a circular chamber allowing the formation of interfaces with a perfect arc shape. The inlet and the outlet of the lens chamber are placed with an offset to the chamber axis to achieve a radius of curvature smaller than the limiting chamber radius. A model mathematically predicts the relationship between the flow rate ratio and the curvature of the interface and the resulting focal length. The device was fabricated and tested with laser light guided by optical fibres. Experiments were carried out to verify the analytical model. Benzyl alcohol and ethylene glycol were used as optical media to form the lens. Due to the small radius of curvature, better focusing ability than the previous symmetric design was achieved. On-chip focusing with fibre-to-fibre transmission was demonstrated with this micro optofluidic lens.
View less >
View more >A micro optofluidic lens is formed by laminar streams of immiscible liquids with different refractive indices. This paper reports modelling and characterization for a new design of a micro optofluidic lens. The lens has a circular chamber allowing the formation of interfaces with a perfect arc shape. The inlet and the outlet of the lens chamber are placed with an offset to the chamber axis to achieve a radius of curvature smaller than the limiting chamber radius. A model mathematically predicts the relationship between the flow rate ratio and the curvature of the interface and the resulting focal length. The device was fabricated and tested with laser light guided by optical fibres. Experiments were carried out to verify the analytical model. Benzyl alcohol and ethylene glycol were used as optical media to form the lens. Due to the small radius of curvature, better focusing ability than the previous symmetric design was achieved. On-chip focusing with fibre-to-fibre transmission was demonstrated with this micro optofluidic lens.
View less >
Journal Title
Journal of Micromechanics and Microengineering
Volume
19
Issue
8
Copyright Statement
© 2009 Institute of Physics Publishing. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher.Please refer to the journal's website for access to the definitive, published version.
Subject
Engineering
Engineering practice and education not elsewhere classified