Noise and disturbance in quantum measurements: an information-theoretic approach

View/ Open
Author(s)
Buscemi, Francesco
Hall, Michael JW
Ozawa, Masanao
Wilde, Mark M
Griffith University Author(s)
Year published
2014
Metadata
Show full item recordAbstract
We introduce information-theoretic definitions for noise and disturbance in quantum measurements and prove a state-independent noise-disturbance tradeoff relation that these quantities have to satisfy in any conceivable setup. Contrary to previous approaches, the information-theoretic quantities we define are invariant under the relabelling of outcomes and allow for the possibility of using quantum or classical operations to "correct" for the disturbance. We also show how our bound implies strong tradeoff relations for mean square deviations.We introduce information-theoretic definitions for noise and disturbance in quantum measurements and prove a state-independent noise-disturbance tradeoff relation that these quantities have to satisfy in any conceivable setup. Contrary to previous approaches, the information-theoretic quantities we define are invariant under the relabelling of outcomes and allow for the possibility of using quantum or classical operations to "correct" for the disturbance. We also show how our bound implies strong tradeoff relations for mean square deviations.
View less >
View less >
Journal Title
Physical Review Letters
Volume
112
Copyright Statement
© 2014 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Mathematical sciences
Physical sciences
Quantum information, computation and communication
Quantum optics and quantum optomechanics
Engineering