• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Scattering and attenuation of surface acoustic waves in droplet actuation

    Thumbnail
    View/Open
    96043_1.pdf (2.285Mb)
    Author(s)
    Jiao, ZJ
    Huang, XY
    Nguyen, N-T
    Griffith University Author(s)
    Nguyen, Nam-Trung
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    This paper presents an analytical model for surface acoustic waves (SAW) in actuating a single liquid droplet on a piezoelectric substrate. Both scattering waves outside the droplet and attenuation waves beneath the droplet are obtained, and the energy transfer from SAW to droplet in the process of actuation is calculated. The results from this analytical model can provide qualitative explanations to some experimental observations, such as the weak actuation behind the droplet and flow patterns inside the droplet. It is found that effective actuation wavelength is around 1/5 of the droplet radius, at which the droplet absorbs ...
    View more >
    This paper presents an analytical model for surface acoustic waves (SAW) in actuating a single liquid droplet on a piezoelectric substrate. Both scattering waves outside the droplet and attenuation waves beneath the droplet are obtained, and the energy transfer from SAW to droplet in the process of actuation is calculated. The results from this analytical model can provide qualitative explanations to some experimental observations, such as the weak actuation behind the droplet and flow patterns inside the droplet. It is found that effective actuation wavelength is around 1/5 of the droplet radius, at which the droplet absorbs the maximum incident SAW energy.
    View less >
    Journal Title
    Journal of physics. A, Mathematical and theoretical
    Volume
    41
    Issue
    35
    DOI
    https://doi.org/10.1088/1751-8113/41/35/355502
    Copyright Statement
    © 2008 Institute of Physics Publishing. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher.Please refer to the journal's website for access to the definitive, published version.
    Subject
    Interdisciplinary Engineering not elsewhere classified
    Mathematical Sciences
    Physical Sciences
    Publication URI
    http://hdl.handle.net/10072/62226
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander