• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Numerical study for wave-induced seabed response around offshore wind turbine foundation in Donghai offshore wind farm, Shanghai, China

    Author(s)
    Chang, Kun-Tan
    Jeng, Dong-Sheng
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Analysis of the wave-seabed-structure interaction is of great importance for the design and construction of marine structures. In this paper, a three-dimensional porous model, based on Reynolds-Averaged Navier-Stokes equations and Biot?s poro-elastic theory, is developed by integrating 3D wave and seabed models to simulate the wave-seabed-structure interaction around the high-rising structure foundation used in the Donghai offshore wind farm. Then parametric studies for wave and seabed characteristics on soil response around the wind turbine foundation are conducted. Liquefaction potential and seabed protection methodology ...
    View more >
    Analysis of the wave-seabed-structure interaction is of great importance for the design and construction of marine structures. In this paper, a three-dimensional porous model, based on Reynolds-Averaged Navier-Stokes equations and Biot?s poro-elastic theory, is developed by integrating 3D wave and seabed models to simulate the wave-seabed-structure interaction around the high-rising structure foundation used in the Donghai offshore wind farm. Then parametric studies for wave and seabed characteristics on soil response around the wind turbine foundation are conducted. Liquefaction potential and seabed protection methodology are investigated in the last section. The main results concluded from the numerical analysis are as follows: (i) both larger wave height and longer wave period will result in higher wave pressure on the structure and seabed; (ii) the existence of the structure has a significant effect on the wave transformation and the distribution of wave-induced pore pressure; (iii) wave height, wave period, soil permeability and degree of saturation play critical roles on dynamic soil behavior; and (iv) original seabed can be protected from liquefaction by replacing the existing layers.
    View less >
    Journal Title
    Ocean Engineering
    Volume
    85
    DOI
    https://doi.org/10.1016/j.oceaneng.2014.04.020
    Subject
    Civil Geotechnical Engineering
    Oceanography
    Civil Engineering
    Maritime Engineering
    Publication URI
    http://hdl.handle.net/10072/62442
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander