• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Complex sediment deposition history on a wide continental shelf: implications for the calculation of accumulation rates on the Great Barrier Reef

    Author(s)
    Lewis, Stephen E
    Olley, Jon
    Furuichi, Takahisa
    Sharma, Ashneel
    Burton, Joanne
    Griffith University Author(s)
    Olley, Jon M.
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Understanding the key processes controlling the delivery, deposition and fate of sediments on continental shelves is critical to appreciate the evolution of coasts and estuaries and to interpret geological sequences. This study presents radiocarbon and Optically Stimulated Luminescence (OSL) ages of sediment cores collected from key locations offshore from the Burdekin River, Australia, the largest single source of sediment delivered to the Great Barrier Reef (GBR) lagoon. The ages show variable sediment accumulation rates at the different locations that coincide with the Holocene avulsion history of the Burdekin River. Our ...
    View more >
    Understanding the key processes controlling the delivery, deposition and fate of sediments on continental shelves is critical to appreciate the evolution of coasts and estuaries and to interpret geological sequences. This study presents radiocarbon and Optically Stimulated Luminescence (OSL) ages of sediment cores collected from key locations offshore from the Burdekin River, Australia, the largest single source of sediment delivered to the Great Barrier Reef (GBR) lagoon. The ages show variable sediment accumulation rates at the different locations that coincide with the Holocene avulsion history of the Burdekin River. Our data show that most fine sediment (<63 孩 delivered from the Burdekin River is retained within 50 km of the mouth, a finding that contrasts previous studies which postulated that fine sediments are advected northwards via longshore drift processes. The pairing of radiocarbon and OSL ages provides insights on resuspension regimes operating on the inner shelf of the GBR. It was thought that turbidity on inshore GBR coral reefs and seagrass meadows has increased as a result of increased erosion in the adjacent catchment from agricultural development. Our data show that the age of the sediments in Cleveland Bay (derived from the radiocarbon ages from shell and organic material) can be several thousand years older than when the sediment was last deposited (OSL ages). However, the increased turbidity could conceivably be caused from 'new biologically-produced sediment' (i.e. particulate organic matter) as a result of increased nutrient export to the GBR. We suggest that the composition of sediment in resuspension events before and after the wet season be analysed to examine whether newly delivered organic-rich sediment can affect coral reefs and seagrass meadows.
    View less >
    Journal Title
    Earth and Planetary Science Letters
    Volume
    393
    DOI
    https://doi.org/10.1016/j.epsl.2014.02.038
    Subject
    Physical sciences
    Earth sciences
    Geomorphology and earth surface processes
    Publication URI
    http://hdl.handle.net/10072/62446
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander