• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Breaking wave-induced response of composite breakwater and liquefaction in seabed foundation

    Author(s)
    Ye, Jianhong
    Jeng, Dongsheng
    Liu, PL-F
    Chan, AHC
    Ren, Wang
    Zhu, Changqi
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    In the practice of engineering, breaking wave is much more dangerous for the stability of composite breakwater built on porous seabed than non-breaking wave in offshore area. In previous investigations or design codes, the empirical formulations generally were adopted to estimate the wave impact acting on the lateral side of caisson. The interaction between breaking wave, seabed foundation and composite breakwater is not taken into consideration. In this study, adopting the integrated numerical model PORO-WSSI 2D developed by (Ye, 2012a) and (Jeng et al., 2013), the interaction mechanism between breaking wave, seabed foundation ...
    View more >
    In the practice of engineering, breaking wave is much more dangerous for the stability of composite breakwater built on porous seabed than non-breaking wave in offshore area. In previous investigations or design codes, the empirical formulations generally were adopted to estimate the wave impact acting on the lateral side of caisson. The interaction between breaking wave, seabed foundation and composite breakwater is not taken into consideration. In this study, adopting the integrated numerical model PORO-WSSI 2D developed by (Ye, 2012a) and (Jeng et al., 2013), the interaction mechanism between breaking wave, seabed foundation and composite breakwater is investigated numerically. In PORO-WSSI 2D,the Volume-Averaged Reynolds Averaged Navier-Stokes (VARANS) equations govern the wave motion and the porous flow in seabed foundation and in rubble mound; and the dynamic Biot's equations (known as "u-p" approximation) govern the dynamic behaviors of seabed foundation and composite breakwater under breaking wave loading. Numerical analysis indicates that the turbulent energy of breaking wave is significant, and the wave impact on caisson applied by breaking wave is much greater than non-breaking wave. The composite breakwater and its seabed foundation respond to the breaking wave loading intensively. The maximum horizontal vibration magnitude of the composite breakwater is up to 5 mm; the maximum liquefaction depth in the seabed in front of the composite breakwater reaches up to 1.2 to 1.6 m. The parametric study shows that the permeability and saturation of seabed, wave height are three dominant factors for the wave-induced liquefaction in seabed foundation.
    View less >
    Journal Title
    Coastal Engineering
    Volume
    85
    DOI
    https://doi.org/10.1016/j.coastaleng.2013.08.003
    Subject
    Civil Geotechnical Engineering
    Physical Geography and Environmental Geoscience
    Geology
    Oceanography
    Civil Engineering
    Publication URI
    http://hdl.handle.net/10072/62493
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander