• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Wave and current induced seabed response around a submarine pipeline in an anisotropic seabed

    Author(s)
    Zhou, Xiang-Lian
    Wang, Jian-Hua
    Zhang, Jun
    Jeng, Dong-Sheng
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Zhang, Jun
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    A better understanding of the phenomenon of wave-seabed-structure interactions is essential for the evaluation of the liquefaction of seabed foundation under dynamic loading in the ocean environments. However, only a few investigations have been conducted for the cross-anisotropic seabed under wave pressure and marine structures, despite the fact that most seabeds are anisotropic medium. Furthermore, most previous numerical models for Biot's consolidation theory were only considered wave loading. In this study, based on Biot's partly dynamic poroelastic theory ("u-p" approximation), a two-dimensional FEM seabed model is ...
    View more >
    A better understanding of the phenomenon of wave-seabed-structure interactions is essential for the evaluation of the liquefaction of seabed foundation under dynamic loading in the ocean environments. However, only a few investigations have been conducted for the cross-anisotropic seabed under wave pressure and marine structures, despite the fact that most seabeds are anisotropic medium. Furthermore, most previous numerical models for Biot's consolidation theory were only considered wave loading. In this study, based on Biot's partly dynamic poroelastic theory ("u-p" approximation), a two-dimensional FEM seabed model is adopted to investigate the wave and current induced seabed response around a submarine pipeline. The third-order solution of wave-current interactions is used to determine the dynamic pressure acting on the seabed. Verification of the proposed model is performed against the previous experimental data and analytical result. With the proposed numerical model, the effects of wave, current and seabed characteristics, such as Poisson's ratio, Young's modulus, degree of saturation, and pipeline buried depth on the wave-induced seabed response will be examined. Then, the wave-current induced seabed liquefaction is also discussed. The numerical results demonstrate significant effects of anisotropic soil behavior on seabed liquefaction.
    View less >
    Journal Title
    Ocean Engineering
    Volume
    75
    DOI
    https://doi.org/10.1016/j.oceaneng.2013.11.016
    Subject
    Civil Geotechnical Engineering
    Oceanography
    Civil Engineering
    Maritime Engineering
    Publication URI
    http://hdl.handle.net/10072/62494
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander