• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The erosive growth of hillside gullies

    Author(s)
    Rose, Calvin W
    Yu, Bofu
    Ward, Douglas P
    Saxton, Nina E
    Olley, Jon M
    Tews, Errol K
    Griffith University Author(s)
    Rose, Calvin W.
    Yu, Bofu
    Olley, Jon M.
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    The rate of erosion of hillside gullies depends both on gully flow characteristics and the resistance offered by the gully soil profile to erosion. This paper describes a method for quantifying a physically-based resistance measure, illustrated by application to a gully feeding sediment into the Bremer River, southeast Queensland, Australia. The dynamics of discharge down the gully during runoff events is the driver of erosion, but this was unknown. A new method is described whereby this unmeasured flow can be estimated using data on rainfall rate and river gauge monitoring. The data collected on the gully was the increase ...
    View more >
    The rate of erosion of hillside gullies depends both on gully flow characteristics and the resistance offered by the gully soil profile to erosion. This paper describes a method for quantifying a physically-based resistance measure, illustrated by application to a gully feeding sediment into the Bremer River, southeast Queensland, Australia. The dynamics of discharge down the gully during runoff events is the driver of erosion, but this was unknown. A new method is described whereby this unmeasured flow can be estimated using data on rainfall rate and river gauge monitoring. The data collected on the gully was the increase in dimensions and volume (and so soil loss) over a two year period. This information was obtained from a digital elevation model (DEM) of the catchment, derived from Light Detection and Ranging (LiDAR) observations made at either end of the two year period. The soil profile resistance characteristic evaluated is the energy required to erode a unit mass of soil from the gully walls, a physically-defined parameter, J, present in flow-driven erosion theory, which was adapted and applied to predict soil loss from the Bremer River gully. The value of J was evaluated by equating predicted to measured gully soil loss over the two year period using two alternative descriptions of gully cross-section. Firstly a realistic gully shape description was used, made possible by LiDAR data, yielding J?=?405.5?J/kg. Secondly, in order to allow use of more widely-available aerial photography for such studies, the simplifying assumption of a semi-circular gully shape was made, yielding J?=?455?J/kg. Allowing a ᳰ% error in estimated effective runoff rate for this ungauged gully, the estimated J value would have an uncertainty of +1%/-7% using the actual gully geometry. The assumptions made in estimating J are discussed, and possible applications of this information listed.
    View less >
    Journal Title
    Earth Surface Processes and Landforms
    DOI
    https://doi.org/10.1002/esp.3593
    Subject
    Geology
    Physical geography and environmental geoscience
    Publication URI
    http://hdl.handle.net/10072/62608
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander