• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Error distribution and correction of the predicted wave characteristics over the Persian Gulf

    Thumbnail
    View/Open
    96709_1.pdf (1.025Mb)
    Author(s)
    Moeini, Mohammad Hadi
    Etemad-Shahidi, Amir
    Chegini, Vahid
    Rahmani, Iraj
    Moghaddam, Mona
    Griffith University Author(s)
    Etemad Shahidi, Amir F.
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Wind-waves are the most important environmental parameter for the design of coastal and offshore structures, sediment transport, coastal erosion etc. Therefore, an accurate evaluation of the wave climate is of great importance. Due to the lack of long term measurements, nowadays numerically modeled wave data are widely used for determining the wave climate. The numerically simulated wave data are continuous in time and space, but generally inaccurate in enclosed and semi-enclosed basins mainly due to the inaccurate wind input data. The main goal of this study is to develop a new and efficient approach to improve the hindcasted ...
    View more >
    Wind-waves are the most important environmental parameter for the design of coastal and offshore structures, sediment transport, coastal erosion etc. Therefore, an accurate evaluation of the wave climate is of great importance. Due to the lack of long term measurements, nowadays numerically modeled wave data are widely used for determining the wave climate. The numerically simulated wave data are continuous in time and space, but generally inaccurate in enclosed and semi-enclosed basins mainly due to the inaccurate wind input data. The main goal of this study is to develop a new and efficient approach to improve the hindcasted wave parameters in the Persian Gulf. Hence, the third generation SWAN model was employed for the wave modeling forced by the 6-hourly ECMWF wind data with a resolution of 0.5஠A new methodology was introduced for the distribution of wave prediction errors from discrete observation points to the other points of interest. It was found that the proposed method which considers the wave generation physics, leads to a significant improvement in the predicted wave parameters. In addition, it was revealed that the improvements in prediction of waves with higher wave heights and longer periods are more than those of others. This was shown to be due to the higher correlation between high values of output parameters which contain larger errors. The influence radius in the error distribution procedure was found to be near 2ࠨ~200 km).
    View less >
    Journal Title
    Ocean Engineering
    Volume
    75
    DOI
    https://doi.org/10.1016/j.oceaneng.2013.11.012
    Copyright Statement
    © 2014 Elsevier Inc. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Oceanography
    Civil engineering
    Water resources engineering
    Maritime engineering
    Publication URI
    http://hdl.handle.net/10072/62728
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander