• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Approximate master equations for atom optics.

    Thumbnail
    View/Open
    23836_1.pdf (242.6Kb)
    Author(s)
    Atkins, DJ
    Wiseman, HM
    Warszawski, P
    Griffith University Author(s)
    Wiseman, Howard M.
    Atkins, Daniel J.
    Warszawski, Prahlad
    Year published
    2003
    Metadata
    Show full item record
    Abstract
    In the field of atom optics, the basis of many experiments is a two-level atom coupled to a light field. The evolution of this system is governed by a master equation. The irreversible components of this master equation describe the spontaneous emission of photons from the atom. For many applications, it is necessary to minimize the effect of this irreversible evolution. This can be achieved by having a far detuned light field. The drawback of this regime is that making the detuning very large makes the time step required to solve the master equation very small, much smaller than the time scale of any significant evolution. ...
    View more >
    In the field of atom optics, the basis of many experiments is a two-level atom coupled to a light field. The evolution of this system is governed by a master equation. The irreversible components of this master equation describe the spontaneous emission of photons from the atom. For many applications, it is necessary to minimize the effect of this irreversible evolution. This can be achieved by having a far detuned light field. The drawback of this regime is that making the detuning very large makes the time step required to solve the master equation very small, much smaller than the time scale of any significant evolution. This makes the problem very numerically intensive. For this reason, approximations are used to simulate the master equation, which are more numerically tractable to solve. This paper analyzes four approximations: The standard adiabatic approximation, a more sophisticated adiabatic approximation (not used before), a secular approximation, and a fully quantum dressed-state approximation. The advantages and disadvantages of each are investigated with respect to accuracy, complexity, and the resources required to simulate. In a parameter regime of particular experimental interest, only the sophisticated adiabatic and dressed-state approximations agree well with the exact evolution.
    View less >
    Journal Title
    Physical Review A (Atomic, Molecular and Optical Physics)
    Volume
    67
    Publisher URI
    http://prola.aps.org/
    DOI
    https://doi.org/10.1103/PhysRevA.67.023802
    Copyright Statement
    © 2003 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Mathematical sciences
    Physical sciences
    Chemical sciences
    Publication URI
    http://hdl.handle.net/10072/6303
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander