• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A 2.5-D dynamic model for a saturated porous medium. Part II: Boundary element method

    Author(s)
    Lu, Jian-Fei
    Jeng, Dong-Sheng
    Williams, Sally
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    The 3-D boundary integral equation is derived in terms of the reciprocal work theorem and used along with the 2.5-D Green's function developed in Part I [Lu, J.F., Jeng, D.S., Williams, S., submitted for publication. A 2.5-D dynamic model for a saturated porous medium: Part I. Green's function. Int. J. Solids Struct.] to develop the 2.5-D boundary integral equation for a saturated porous medium. The 2.5-D boundary integral equations for the wave scattering problem and the moving load problem are established. The Cauchy type singularity of the 2.5-D boundary integral equation is eliminated through introduction of an auxiliary ...
    View more >
    The 3-D boundary integral equation is derived in terms of the reciprocal work theorem and used along with the 2.5-D Green's function developed in Part I [Lu, J.F., Jeng, D.S., Williams, S., submitted for publication. A 2.5-D dynamic model for a saturated porous medium: Part I. Green's function. Int. J. Solids Struct.] to develop the 2.5-D boundary integral equation for a saturated porous medium. The 2.5-D boundary integral equations for the wave scattering problem and the moving load problem are established. The Cauchy type singularity of the 2.5-D boundary integral equation is eliminated through introduction of an auxiliary problem and the treatment of the weakly singular kernel is also addressed. Discretisation of the 2.5-D boundary integral equation is achieved using boundary iso-parametric elements. The discrete wavenumber domain solution is obtained via the 2.5-D boundary element method, and the space domain solution is recovered using the inverse Fourier transform. To validate the new methodology, numerical results of this paper are compared with those obtained using an analytical approach; also, some numerical results and corresponding analysis are presented.
    View less >
    Journal Title
    International Journal of Solids and Structures
    Volume
    45
    Issue
    2
    DOI
    https://doi.org/10.1016/j.ijsolstr.2007.07.026
    Subject
    Civil Geotechnical Engineering
    Engineering
    Publication URI
    http://hdl.handle.net/10072/63099
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander