• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A mutation in alpha-tropomyosin (slow) affects muscle strength, maturation and hypertrophy in a mouse model for nemaline myopathy.

    Author(s)
    Corbett, Mark A.
    Robinson, C. Stephen
    Ridley, Greta
    Yang, Nan
    Joya, Josephine E.
    Stewart, Angus W.
    Schnell, Christina
    Gunning, Peter W.
    North, Kathryn N.
    Hardeman, Edna C.
    Griffith University Author(s)
    Ridley, Greta
    Year published
    2001
    Metadata
    Show full item record
    Abstract
    Nemaline myopathy is a hereditary disease of skeletal muscle defined by a distinct pathology of electron-dense accumulations within the sarcomeric units called rods, muscle weakness and, in most cases, a slow oxidative (type 1) fiber predominance. We generated a transgenic mouse model to study this disorder by expressing an autosomal dominant mutant of α-tropomyosinslow previously identified in a human cohort. Rods were found in all muscles, but to varying extents which did not correlate with the amount of mutant protein present. In addition, a pathological feature not commonly associated with this disorder, cytoplasmic ...
    View more >
    Nemaline myopathy is a hereditary disease of skeletal muscle defined by a distinct pathology of electron-dense accumulations within the sarcomeric units called rods, muscle weakness and, in most cases, a slow oxidative (type 1) fiber predominance. We generated a transgenic mouse model to study this disorder by expressing an autosomal dominant mutant of α-tropomyosinslow previously identified in a human cohort. Rods were found in all muscles, but to varying extents which did not correlate with the amount of mutant protein present. In addition, a pathological feature not commonly associated with this disorder, cytoplasmic bodies, was found in the mouse and subsequently identified in human samples. Muscle weakness is a major feature of this disease and was examined with respect to fiber composition, degree of rod-containing fibers, fiber mechanics and fiber diameter. Hypertrophy of fast, glycolytic (type 2B) fibers was apparent at 2 months of age. Muscle weakness was apparent in mice at 5–6 months of age, mimicking the late onset observed in humans with this mutation. The late onset did not correlate with observed changes in fiber type and rod pathology. Rather, the onset of muscle weakness correlates with an age-related decrease in fiber diameter and suggests that early onset is prevented by hypertrophy of fast, glycolytic fibers. We suggest that the clinical phenotype is precipitated by a failure of the hypertrophy to persist and therefore compensate for muscle weakness.
    View less >
    Journal Title
    Human Molecular Genetics
    Volume
    10
    Issue
    4
    DOI
    https://doi.org/10.1093/hmg/10.4.317
    Subject
    Clinical Sciences not elsewhere classified
    Biological Sciences
    Medical and Health Sciences
    Publication URI
    http://hdl.handle.net/10072/63141
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander