Effect of nuclear mass on carrier-envelope-phase-controlled electron localization in disassociating molecules

View/ Open
Author(s)
Xu, Han
Xu, Tian-Yu
He, Feng
Kielpinski, D
Sang, RT
Litvinyuk, IV
Year published
2014
Metadata
Show full item recordAbstract
We explore the effect of nuclear mass on the laser-driven electron localization process. We dissociate a mixed H2 and D2 target with intense, carrier-envelope-phase (CEP) stable 6 fs laser pulses and detect the products in a reaction microscope. We observe a very strong CEP-dependent asymmetry in proton and deuteron emission for low dissociation energy channels. This asymmetry is stronger for H2 than for D2. We also observe a large CEP offset between the asymmetry spectra for H2 and D2. Our theoretical simulations, based on a one-dimensional two-channel model, agree very well with the asymmetry spectra, but fail to account ...
View more >We explore the effect of nuclear mass on the laser-driven electron localization process. We dissociate a mixed H2 and D2 target with intense, carrier-envelope-phase (CEP) stable 6 fs laser pulses and detect the products in a reaction microscope. We observe a very strong CEP-dependent asymmetry in proton and deuteron emission for low dissociation energy channels. This asymmetry is stronger for H2 than for D2. We also observe a large CEP offset between the asymmetry spectra for H2 and D2. Our theoretical simulations, based on a one-dimensional two-channel model, agree very well with the asymmetry spectra, but fail to account properly for the phase difference between the two isotopes.
View less >
View more >We explore the effect of nuclear mass on the laser-driven electron localization process. We dissociate a mixed H2 and D2 target with intense, carrier-envelope-phase (CEP) stable 6 fs laser pulses and detect the products in a reaction microscope. We observe a very strong CEP-dependent asymmetry in proton and deuteron emission for low dissociation energy channels. This asymmetry is stronger for H2 than for D2. We also observe a large CEP offset between the asymmetry spectra for H2 and D2. Our theoretical simulations, based on a one-dimensional two-channel model, agree very well with the asymmetry spectra, but fail to account properly for the phase difference between the two isotopes.
View less >
Journal Title
Physical Review A
Volume
89
Copyright Statement
© 2014 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Mathematical sciences
Physical sciences
Atomic and molecular physics
Chemical sciences