• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • High-Speed Visualization of Time-Varying Data in Large-Scale Structural Dynamic Analyses with a GPU

    Thumbnail
    View/Open
    98156_1.pdf (1.300Mb)
    Author
    Xu, Zhen
    Lu, Xinzheng
    Guan, Hong
    Ren, Aizhu
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Large-scale structural dynamic analyses generally produce massive amount of time-varying data. Inefficient rendering of these data seriously affects the quality of display of and user interaction with the analysis results. A high-speed visualization solution using a GPU (graphics processing unit) is thus developed in this study. Based on the clustering concept, a key frame extraction algorithm specific to the GPU-based rendering is proposed, which significantly reduces the data size to satisfy the GPU memory requirement. Using the key frames, a GPU-based parallel frame interpolation algorithm is also proposed to reconstruct ...
    View more >
    Large-scale structural dynamic analyses generally produce massive amount of time-varying data. Inefficient rendering of these data seriously affects the quality of display of and user interaction with the analysis results. A high-speed visualization solution using a GPU (graphics processing unit) is thus developed in this study. Based on the clustering concept, a key frame extraction algorithm specific to the GPU-based rendering is proposed, which significantly reduces the data size to satisfy the GPU memory requirement. Using the key frames, a GPU-based parallel frame interpolation algorithm is also proposed to reconstruct the complete structural dynamic process. Particularly, a novel data access model considering the features of time-varying data and GPU memory is designed to improve the interpolation efficiency. Two case studies including an arch bridge and a high-rise building are presented, confirming the ability of the proposed solution to provide a high-speed and interactive visualization environment for large-scale structural dynamic analyses.
    View less >
    Journal Title
    Automation in Construction
    Volume
    42
    DOI
    https://doi.org/10.1016/j.autcon.2014.02.020
    Copyright Statement
    © 2014 Elsevier B.V.. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Structural Engineering
    Publication URI
    http://hdl.handle.net/10072/63403
    Collection
    • Journal articles

    Footer

    Social media

    • Facebook
    • Twitter
    • YouTube
    • Instagram
    • Linkedin
    First peoples of Australia
    • Aboriginal
    • Torres Strait Islander

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane
    • Australia