Design Optimization and Finite Element Analysis of 3C-SiC Bio-Sensors based on Dogbone Resonator
Abstract
This paper presents the optimized design and Finite Element Analysis (FEA) of a bio sensor based on cubic silicon carbide (3C-SiC) for pathogen detection. Silicon Carbide is chosen due to its excellent material properties and chemical stability compared to silicon in varying environmental conditions. The desired resonance frequency is optimized using matlab and the finite element analysis is carried out using COMSOL and Intellisuite software's. The effect of the residual stress on the desired mode of resonant frequency and the fabrication feasibility of the proposed resonator fabrication are studied using FEA analysis. The ...
View more >This paper presents the optimized design and Finite Element Analysis (FEA) of a bio sensor based on cubic silicon carbide (3C-SiC) for pathogen detection. Silicon Carbide is chosen due to its excellent material properties and chemical stability compared to silicon in varying environmental conditions. The desired resonance frequency is optimized using matlab and the finite element analysis is carried out using COMSOL and Intellisuite software's. The effect of the residual stress on the desired mode of resonant frequency and the fabrication feasibility of the proposed resonator fabrication are studied using FEA analysis. The mathematical modeling of thermally actuation and piezoresistive sensing for the design resonator bio sensors are illuminated. The close agreement between the analytical model and finite element analysis verify the design of proposed bio sensors.
View less >
View more >This paper presents the optimized design and Finite Element Analysis (FEA) of a bio sensor based on cubic silicon carbide (3C-SiC) for pathogen detection. Silicon Carbide is chosen due to its excellent material properties and chemical stability compared to silicon in varying environmental conditions. The desired resonance frequency is optimized using matlab and the finite element analysis is carried out using COMSOL and Intellisuite software's. The effect of the residual stress on the desired mode of resonant frequency and the fabrication feasibility of the proposed resonator fabrication are studied using FEA analysis. The mathematical modeling of thermally actuation and piezoresistive sensing for the design resonator bio sensors are illuminated. The close agreement between the analytical model and finite element analysis verify the design of proposed bio sensors.
View less >
Journal Title
Applied Mechanics and Materials
Volume
595
Subject
Engineering
Microelectronics
Microelectromechanical systems (MEMS)