Asymmetric heat transfer in liquid–liquid segmented flow in microchannels

View/ Open
Author(s)
Che, Zhizhao
Wong, Teck Neng
Nam-Trung, Nguyen
Yang, Chun
Griffith University Author(s)
Year published
2014
Metadata
Show full item recordAbstract
Heat transfer in segmented flow in microchannels can be significantly enhanced by recirculating vortices, due to the presence of interfaces. The processes of heat transfer in segmented flow subjecting to asymmetric boundary conditions are studied. Two types of boundary conditions are considered, asymmetric constant surface temperature and asymmetric constant surface heat flux. The paths of heat flow and the effects of the thermal conductivity, the plug length, and the Peclet number are studied. The results show different features from those at symmetric boundary conditions. The heat transfer process at asymmetric boundary ...
View more >Heat transfer in segmented flow in microchannels can be significantly enhanced by recirculating vortices, due to the presence of interfaces. The processes of heat transfer in segmented flow subjecting to asymmetric boundary conditions are studied. Two types of boundary conditions are considered, asymmetric constant surface temperature and asymmetric constant surface heat flux. The paths of heat flow and the effects of the thermal conductivity, the plug length, and the Peclet number are studied. The results show different features from those at symmetric boundary conditions. The heat transfer process at asymmetric boundary conditions is controlled by both thermal advection and diffusion at the mid-plane of the channel. The coupling effects between the adjacent plugs complicate the process by the heat transfer across plug-plug interfaces.
View less >
View more >Heat transfer in segmented flow in microchannels can be significantly enhanced by recirculating vortices, due to the presence of interfaces. The processes of heat transfer in segmented flow subjecting to asymmetric boundary conditions are studied. Two types of boundary conditions are considered, asymmetric constant surface temperature and asymmetric constant surface heat flux. The paths of heat flow and the effects of the thermal conductivity, the plug length, and the Peclet number are studied. The results show different features from those at symmetric boundary conditions. The heat transfer process at asymmetric boundary conditions is controlled by both thermal advection and diffusion at the mid-plane of the channel. The coupling effects between the adjacent plugs complicate the process by the heat transfer across plug-plug interfaces.
View less >
Journal Title
International Journal of Heat and Mass Transfer
Volume
77
Copyright Statement
© 2014 Elsevier Inc. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Mathematical sciences
Physical sciences
Engineering
Experimental methods in fluid flow, heat and mass transfer