• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel

    Thumbnail
    View/Open
    97054_1.pdf (3.366Mb)
    Author(s)
    Zhang, Jun
    Yan, Sheng
    Sluyter, Ronald
    Li, Weihua
    Alici, Gursel
    Nam-Trung, Nguyen
    Griffith University Author(s)
    Nguyen, Nam-Trung
    Zhang, Jun
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    This paper presents an inertial microfluidic device with a simple serpentine micro-channel to continuously separate particles with high performance. Separation of micro/nano-particles has a variety of potential applications in biomedicine and industry. Among the existing separation technologies, a label-free technique without the use of antibody affinity, filter or centrifugation is highly desired to ensure minimal damage and alteration to the cells. Inertial microfluidics utilising hydrodynamic forces to separate particles is one of the most suitable label-free technologies with a high throughput. Our separation concept ...
    View more >
    This paper presents an inertial microfluidic device with a simple serpentine micro-channel to continuously separate particles with high performance. Separation of micro/nano-particles has a variety of potential applications in biomedicine and industry. Among the existing separation technologies, a label-free technique without the use of antibody affinity, filter or centrifugation is highly desired to ensure minimal damage and alteration to the cells. Inertial microfluidics utilising hydrodynamic forces to separate particles is one of the most suitable label-free technologies with a high throughput. Our separation concept relies on size-based differential equilibrium positions of the particles perpendicular to the flow. Highly efficient separation is demonstrated with particles of different sizes. The results indicate that the proposed device has an integrative advantage to the existing microfluidic separation techniques, taking accounts of purity, efficiency, parallelizability, footprint, throughput and resolution. Our device is expected to be a good alternative to conventional separation methods for sample preparation and clinical diagnosis.
    View less >
    Journal Title
    Scientific Reports
    Volume
    4
    DOI
    https://doi.org/10.1038/srep04527
    Copyright Statement
    © The Author(s) 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) License (http://creativecommons.org/licenses/by-nc-nd/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited. You may not alter, transform, or build upon this work.
    Subject
    Biomedical instrumentation
    Publication URI
    http://hdl.handle.net/10072/63784
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander