• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Tidal propagation in an oceanic island with sloping beaches

    Thumbnail
    View/Open
    97286_1.pdf (803.7Kb)
    Author(s)
    Chang, Y.
    Jeng, D.
    Yeh, H.
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    In this study, a new analytical solution for describing the tide-induced groundwater fluctuations in oceanic islands with finite length and different slopes of the beaches is developed. Unlike previous solutions, the present solution is not only applicable for a semi-infinite coastal aquifer, but also for an oceanic island with finite length and different sloping beaches. The solution can be used to investigate the effect of higher-order components and beach slopes on the water table fluctuations. The results demonstrate the effect of higher-order components increases with the shallow water parameter or amplitude parameter ...
    View more >
    In this study, a new analytical solution for describing the tide-induced groundwater fluctuations in oceanic islands with finite length and different slopes of the beaches is developed. Unlike previous solutions, the present solution is not only applicable for a semi-infinite coastal aquifer, but also for an oceanic island with finite length and different sloping beaches. The solution can be used to investigate the effect of higher-order components and beach slopes on the water table fluctuations. The results demonstrate the effect of higher-order components increases with the shallow water parameter or amplitude parameter and the water table level increases as beach slopes decrease.
    View less >
    Journal Title
    Hydrology and Earth System Sciences
    Volume
    14
    Issue
    7
    DOI
    https://doi.org/10.5194/hessd-7-1407-2010
    Copyright Statement
    © The Author(s) 2010. This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Civil Geotechnical Engineering
    Physical Geography and Environmental Geoscience
    Civil Engineering
    Environmental Engineering
    Publication URI
    http://hdl.handle.net/10072/63839
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander