• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Exploiting GPUs to investigate an inversion method that retrieves cardiac conductivities from potential measurements

    Thumbnail
    View/Open
    97896_1.pdf (379.8Kb)
    Author(s)
    Johnston, Barbara
    Barnes, Josef
    Griffith University Author(s)
    Johnston, Barbara M.
    Barnes, Josef P.
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Accurate cardiac bidomain conductivity values are essential for realistic simulation of various cardiac electrophysiological phenomena. A method was previously developed that can determine the conductivities from measurements of potential on a multi-electrode array placed on the surface of the heart. These conductivities, as well as a value for fibre rotation, are determined using a mathematical model and a two-pass process that is based on Tikhonov regularisation. Using simulated potentials, to which noise is added, the inversion method was recently shown to retrieve the intracellular conductivities accurately with up to ...
    View more >
    Accurate cardiac bidomain conductivity values are essential for realistic simulation of various cardiac electrophysiological phenomena. A method was previously developed that can determine the conductivities from measurements of potential on a multi-electrode array placed on the surface of the heart. These conductivities, as well as a value for fibre rotation, are determined using a mathematical model and a two-pass process that is based on Tikhonov regularisation. Using simulated potentials, to which noise is added, the inversion method was recently shown to retrieve the intracellular conductivities accurately with up to 15% noise and the extracellular conductivities extremely accurately even with 20% noise. Recent work investigated the sensitivity of the method to the choice of the regularisation parameters. Such a study only became possible due to modifications that were made to the C++ code so that it could run on graphical processing units (GPUs) on the CUDA platform. As the method required the solution of a large number of matrix equations, the highly parallel nature of GPUs was exploited to accelerate execution of the code. Reorganisation of the code and more efficient memory management techniques allowed the data to completely fit in the GPU memory. Comparison between the execution time on the GPU versus the original CPU code shows a speedup of up to 60 times. In the future, the speedup could be further increased with greater use of shared memory, which has a much lower latency (access time) than global memory.
    View less >
    Journal Title
    ANZIAM Journal
    Volume
    55
    Publisher URI
    http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/7790
    Copyright Statement
    © 2013 Australian Mathematical Society. Published by Cambridge University Press. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Biological Mathematics
    Mathematical Sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/64075
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander