• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A versatile synthesis of "tafuramycin A": A potent anticancer and parasite attenuating agent

    Author(s)
    El-Deeb, Ibrahim M
    Rose, Faith J
    Healy, Peter C
    von Itzstein, Mark
    Griffith University Author(s)
    Healy, Peter C.
    von Itzstein, Mark
    El-Deeb, Ibrahim Mustafa
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    An improved and versatile synthesis of tafuramycin A, a potent anticancer and parasite-attenuating agent, is reported. The three major improvements that optimized yield, simplified purification and allowed the synthesis of more versatile duocarmycin analogues are: a first-time reported regioselective bromination using DMAP as catalyst; the control of the aryl radical alkene cyclization step to prevent the dechlorination side reaction; and the design of a new protection/deprotection method to avoid furan double bond reduction during the classical O-benzyl deprotection in the final step. This alternative protection/deprotection ...
    View more >
    An improved and versatile synthesis of tafuramycin A, a potent anticancer and parasite-attenuating agent, is reported. The three major improvements that optimized yield, simplified purification and allowed the synthesis of more versatile duocarmycin analogues are: a first-time reported regioselective bromination using DMAP as catalyst; the control of the aryl radical alkene cyclization step to prevent the dechlorination side reaction; and the design of a new protection/deprotection method to avoid furan double bond reduction during the classical O-benzyl deprotection in the final step. This alternative protection/deprotection strategy provides ready access to duocarmycin seco-analogues that carry labile functionalities under reducing reaction conditions. Tafuramycin A (3) was prepared in either 8 steps from intermediate 6 or 7 steps from intermediate 17 in 52% or 37% yield respectively. Our strategy provides a significant improvement on the original procedure (11% overall yield) and greater versatility for analogue development.
    View less >
    Journal Title
    Organic & Biomolecular Chemistry
    Volume
    12
    Issue
    24
    DOI
    https://doi.org/10.1039/C4OB00842A
    Subject
    Medicinal and biomolecular chemistry
    Organic chemistry
    Organic chemical synthesis
    Publication URI
    http://hdl.handle.net/10072/64127
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander