• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • On the Finite Element Modelling and Simulation of Carbon Nanotubes

    Author(s)
    Ghadyani, Ghasem
    Akbarzade, Mojtaba
    Oechsner, Andreas
    Griffith University Author(s)
    Oechsner, Andreas
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    In this paper, two different beam elements (i.e. according to the Bernoulli beam and Timoshenko beam theory) for the modeling of the behavior of carbon nanotubes are applied. Finite element models are developed for this study with variation of chirality for both zig-zag and armchair configurations of CNTs. The deformations from the finite element simulations are subsequently used to predict the elastic stiffness and the critical buckling load in terms of material and geometric parameters. Furthermore, the dependence of mechanical properties on the kind of beam element and the mesh density is also compared. Based on the ...
    View more >
    In this paper, two different beam elements (i.e. according to the Bernoulli beam and Timoshenko beam theory) for the modeling of the behavior of carbon nanotubes are applied. Finite element models are developed for this study with variation of chirality for both zig-zag and armchair configurations of CNTs. The deformations from the finite element simulations are subsequently used to predict the elastic stiffness and the critical buckling load in terms of material and geometric parameters. Furthermore, the dependence of mechanical properties on the kind of beam element and the mesh density is also compared. Based on the obtained results, Youngs modulus and critical buckling load of structures using Timoshenko beams are clearly lower than the Bernoulli beam approach for all chiralities.
    View less >
    Journal Title
    Key Engineering Materials
    Volume
    607
    DOI
    https://doi.org/10.4028/www.scientific.net/KEM.607.55
    Subject
    Numerical Modelling and Mechanical Characterisation
    Engineering
    Publication URI
    http://hdl.handle.net/10072/64178
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander