• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Endocultivation: 3D printed customized porous scaffolds for heterotopic bone induction

    Author(s)
    T. Becker, Stephan
    Bolte, Hendrik
    Krapf, Oliver
    Seitz, Hermann
    Douglas, Timothy
    Sivananthan, Sureshan
    Wiltfang, Jörg
    Sherry, Eugene
    H. Warnke, Patrick
    Griffith University Author(s)
    Warnke, Patrick H.
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    The aim of this study was to evaluate the ability of computer assisted designed (CAD) synthetic hydroxyapatite and tricalciumphosphate blocks to serve as precise scaffolds for intramuscular bone induction in a rat model. A central channel to allow for vessel pedicle or nerve integration was added. Natural bovine hydroxyapatite blocks served as controls to evaluate and compare biocompatibility of the new matrices. Individually designed 3D-printed rounded and porous hydroxyapatite (HA) and tricalcium phosphate (TCP) blocks were placed in pouches in the Musculus latissimus dorsi in 12 Lewis rats bilaterally. Bovine hydroxyapatite ...
    View more >
    The aim of this study was to evaluate the ability of computer assisted designed (CAD) synthetic hydroxyapatite and tricalciumphosphate blocks to serve as precise scaffolds for intramuscular bone induction in a rat model. A central channel to allow for vessel pedicle or nerve integration was added. Natural bovine hydroxyapatite blocks served as controls to evaluate and compare biocompatibility of the new matrices. Individually designed 3D-printed rounded and porous hydroxyapatite (HA) and tricalcium phosphate (TCP) blocks were placed in pouches in the Musculus latissimus dorsi in 12 Lewis rats bilaterally. Bovine hydroxyapatite blocks with and without a central channel served as controls. Simultaneously, 200 姠rhBMP-2 in 1 ml sodium chloride was injected on both sides. For 8 weeks, bone generation was monitored by computer tomography and fluorescence labeling. The increase rates of bone density in CT examinations were higher in the HA groups (184-220 HU 8 weeks after implantation) compared to the TCP group (18 HU; p < 0.0001). Microradiography and fluorescence microscopy 8 weeks after implantation showed new bone formation for all materials tested. For all scaffolds, toluidine staining revealed vital bone directly on the scaffold materials but also in the gaps between. It can be concluded from our data that the specially shaped hydroxyapatite and tricalcium phosphate blocks tested against the bovine hydroxyapatite blocks showed good biocompatibility and osteoinductivity in vivo. Further studies should explore if the stability of the individually designed blocks is sufficient to cultivate larger replacements without an external matrix for support.
    View less >
    Journal Title
    Oral Oncology
    Volume
    45
    Issue
    11
    DOI
    https://doi.org/10.1016/j.oraloncology.2009.07.004
    Subject
    Dentistry not elsewhere classified
    Dentistry
    Oncology and Carcinogenesis
    Public Health and Health Services
    Publication URI
    http://hdl.handle.net/10072/64734
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander