• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effects of silicate resupply to silicate-deprived thalassiosira weissflogii (bacillariophyta) in stationary or senescent phase: Short-term patterns of growth and cell death

    Author(s)
    Jiang, Yuelu
    Yin, Kedong
    Berges, John A
    Harrison, Paul J
    Griffith University Author(s)
    Yin, Kedong
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    The ability of nutrient‐deprived phytoplankton to recover in the short term when nutrients are resupplied has been studied for nitrogen and phosphorus, but the case for silicate (Si) is poorly understood. Si‐limited Thalassiosira weissflogii (Grunow) Fryxell et Hasle (grown in batch culture) was harvested in stationary phase (when cell numbers stopped increasing ~2 d after Si depletion) and senescence (when cell numbers declined ~4 d after Si depletion) and Si was resupplied at different concentrations (from 0 to 100 μM). Cell numbers, proportion of dead cells, variable fluorescence emissions (Fv/Fm), and activities of ...
    View more >
    The ability of nutrient‐deprived phytoplankton to recover in the short term when nutrients are resupplied has been studied for nitrogen and phosphorus, but the case for silicate (Si) is poorly understood. Si‐limited Thalassiosira weissflogii (Grunow) Fryxell et Hasle (grown in batch culture) was harvested in stationary phase (when cell numbers stopped increasing ~2 d after Si depletion) and senescence (when cell numbers declined ~4 d after Si depletion) and Si was resupplied at different concentrations (from 0 to 100 μM). Cell numbers, proportion of dead cells, variable fluorescence emissions (Fv/Fm), and activities of proteases were measured during Si depletion and for 24 h after Si resupply. As Si was depleted, the specific growth rate declined, dead cells increased from ~2% in log phase, to ~25% in stationary phase to over 35% in senescence, and activities of proteases associated with cell death increased several‐fold. Concentration‐dependent recovery of growth rate was seen after 24 h for cultures resupplied with Si in stationary phase but not in senescence. However, resupply of Si at 100 μM to stationary phase cultures alone increased protease activity to nearly the levels seen in senescence. Differences in the responses to Si resupply suggest that the ability and time to recover from Si depletion depend not only on the growth phase but also on the concentration resupplied.
    View less >
    Journal Title
    Journal of Phycology
    Volume
    50
    Issue
    3
    DOI
    https://doi.org/10.1111/jpy.12176
    Copyright Statement
    Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the authors for more information.
    Subject
    Plant biology
    Plant biology not elsewhere classified
    Fisheries sciences
    Publication URI
    http://hdl.handle.net/10072/64971
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander