• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Mixture models for clustering multilevel growth trajectories

    Author(s)
    Ng, SK
    McLachlan, GJ
    Griffith University Author(s)
    Ng, Shu Kay Angus
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Mixture model-based methods assuming independence may not be valid for clustering growth trajectories arising from multilevel studies because longitudinal data collected from the same unit are often correlated. A mixture of mixed effects models is considered to capture the correlation using multilevel and multivariate random effects. Furthermore, the mixing proportions are allowed to depend on covariates. The additional information is thus incorporated into the mixture model to adjust for individual probabilities of membership of the components. The proposed method is illustrated using simulated and real multilevel growth ...
    View more >
    Mixture model-based methods assuming independence may not be valid for clustering growth trajectories arising from multilevel studies because longitudinal data collected from the same unit are often correlated. A mixture of mixed effects models is considered to capture the correlation using multilevel and multivariate random effects. Furthermore, the mixing proportions are allowed to depend on covariates. The additional information is thus incorporated into the mixture model to adjust for individual probabilities of membership of the components. The proposed method is illustrated using simulated and real multilevel growth trajectory data sets from various scientific fields.
    View less >
    Journal Title
    Computational Statistics and Data Analysis
    Volume
    71
    DOI
    https://doi.org/10.1016/j.csda.2012.12.007
    Subject
    Statistics
    Theory of computation
    Econometrics
    Publication URI
    http://hdl.handle.net/10072/65052
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander