• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Selection of Optimal Parameters for ECG Signal Smoothing and Baseline Drift Removal

    Thumbnail
    View/Open
    99014_1.pdf (763.4Kb)
    Author(s)
    Stantic, Dejan
    Jo, Jun Hyung
    Griffith University Author(s)
    Jo, Jun
    Stantic, Dejan
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Electrocardiogram (ECG) contains crucial clinical information about the cardiac activities of the heart, however, such signal a part of being in large volume is often characterised by a low quality due to the noise and other artifacts. In order to correctly extract the important features from the ECG signal, first it needs to be preprocessed, denoised and normilised. Significant attention in the literature has been directed toward the ECG preprocessing, though there are ambiguity to which wavelet performs the best for ECG signal processing as well as which decomposition level should be used and how the baseline wander can ...
    View more >
    Electrocardiogram (ECG) contains crucial clinical information about the cardiac activities of the heart, however, such signal a part of being in large volume is often characterised by a low quality due to the noise and other artifacts. In order to correctly extract the important features from the ECG signal, first it needs to be preprocessed, denoised and normilised. Significant attention in the literature has been directed toward the ECG preprocessing, though there are ambiguity to which wavelet performs the best for ECG signal processing as well as which decomposition level should be used and how the baseline wander can be removed. Parameters of wavelets have been investigated but the lack of evidence for recommendations is not found. This research conducts a comprehensive study to identify some characteristics of optimal decomposition level and to identify the span that should be used. We have taken into consideration all available wavelets within the Matlab environment and tested it on a number of randomly chosen ECG signals. Results indicate that the decomposition level of 4 should be used and that the Biorthogonal wavelet bior3.9 performs the best for smoothing and baseline drift removal. Also, we concluded that the optimal value for span is 100, which guarantees the best baseline wander removal.
    View less >
    Journal Title
    Computer and Information Science
    Volume
    7
    Issue
    4
    DOI
    https://doi.org/10.5539/cis.v7n4p99
    Copyright Statement
    © The Author(s) 2014. The attached file is reproduced here in accordance with the copyright policy of the publisher. For information about this journal please refer to the journal’s website or contact the authors.
    Subject
    Signal Processing
    Information and Computing Sciences
    Publication URI
    http://hdl.handle.net/10072/65118
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander