Turning the corner with the flash-lag illusion

View/ Open
Author(s)
Chappell, Mark
Hinchy, Jessica
Year published
2014
Metadata
Show full item recordAbstract
Previous attempts to measure localization bias around a right-angle turn (L-trajectory) have found either no spatial bias off the trajectory (Whitney, Cavanagh, & Murakami, 2000) or a bias, in different experiments, both 'inside' and 'outside' the trajectory (Nieman, Sheth, & Shimojo, 2010). However, Eagleman and Sejnowski (2007) presented data showing that the perceived location of a brief feature on two moving stimuli could be predicted from the vector sum of their directions after the feature appeared. Such a vector sum with an L-trajectory could predict that the perceived position before the turn should be biased 'sideways' ...
View more >Previous attempts to measure localization bias around a right-angle turn (L-trajectory) have found either no spatial bias off the trajectory (Whitney, Cavanagh, & Murakami, 2000) or a bias, in different experiments, both 'inside' and 'outside' the trajectory (Nieman, Sheth, & Shimojo, 2010). However, Eagleman and Sejnowski (2007) presented data showing that the perceived location of a brief feature on two moving stimuli could be predicted from the vector sum of their directions after the feature appeared. Such a vector sum with an L-trajectory could predict that the perceived position before the turn should be biased 'sideways' off the trajectory, in the direction of the final motion. With stimuli that particularly facilitated accurate vernier judgments, and measuring bias via the flash-lag illusion, this is indeed what we observed. Our data thus favour Eagleman and Sejnowski's (2007) supposition. Further, the bias occurred before the change in direction, rather than after it, supporting the contention that it is motion after a point being sampled that affects its perception (Bachmann et al., 2003; Eagleman & Sejnowski, 2007; Krekelberg & Lappe, 2000; Nieman, Sheth, & Shimojo, 2010).
View less >
View more >Previous attempts to measure localization bias around a right-angle turn (L-trajectory) have found either no spatial bias off the trajectory (Whitney, Cavanagh, & Murakami, 2000) or a bias, in different experiments, both 'inside' and 'outside' the trajectory (Nieman, Sheth, & Shimojo, 2010). However, Eagleman and Sejnowski (2007) presented data showing that the perceived location of a brief feature on two moving stimuli could be predicted from the vector sum of their directions after the feature appeared. Such a vector sum with an L-trajectory could predict that the perceived position before the turn should be biased 'sideways' off the trajectory, in the direction of the final motion. With stimuli that particularly facilitated accurate vernier judgments, and measuring bias via the flash-lag illusion, this is indeed what we observed. Our data thus favour Eagleman and Sejnowski's (2007) supposition. Further, the bias occurred before the change in direction, rather than after it, supporting the contention that it is motion after a point being sampled that affects its perception (Bachmann et al., 2003; Eagleman & Sejnowski, 2007; Krekelberg & Lappe, 2000; Nieman, Sheth, & Shimojo, 2010).
View less >
Journal Title
Vision Research
Volume
96
Copyright Statement
© 2014 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Biomedical and clinical sciences
Psychology
Cognition