• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Symplectic Geometry Spectrum Analysis of Nonlinear Time Series

    Author(s)
    Xie, Hong-Bo
    Guo, Tianruo
    Sivakumar, Bellie
    Liew, Alan Wee-Chung
    Dokos, Socrates
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Various time-series decomposition techniques, including wavelet transform, singular spectrum analysis, empirical mode decomposition and independent component analysis, have been developed for nonlinear dynamic system analysis. In this paper, we describe a symplectic geometry spectrum analysis (SGSA) method to decompose a time series into a set of independent additive components. SGSA is performed in four steps: embedding, symplectic QR decomposition, grouping and diagonal averaging. The obtained components can be used for de-noising, prediction, control and synchronization. We demonstrate the effectiveness of SGSA in ...
    View more >
    Various time-series decomposition techniques, including wavelet transform, singular spectrum analysis, empirical mode decomposition and independent component analysis, have been developed for nonlinear dynamic system analysis. In this paper, we describe a symplectic geometry spectrum analysis (SGSA) method to decompose a time series into a set of independent additive components. SGSA is performed in four steps: embedding, symplectic QR decomposition, grouping and diagonal averaging. The obtained components can be used for de-noising, prediction, control and synchronization. We demonstrate the effectiveness of SGSA in reconstructing and predicting two noisy benchmark nonlinear dynamic systems: the Lorenz and Mackey-Glass attractors. Examples of prediction of a decadal average sunspot number time series and a mechanomyographic signal recorded from human skeletal muscle further demonstrate the applicability of the SGSA method in real-life applications.
    View less >
    Journal Title
    Proceedings of the Royal Society A
    Volume
    470
    Issue
    2170
    DOI
    https://doi.org/10.1098/rspa.2014.0409
    Subject
    Mathematical sciences
    Physical sciences
    Engineering
    Signal processing
    Publication URI
    http://hdl.handle.net/10072/65213
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander