ApoE secretion modulating bromotyrosine derivative from the Australian marine sponge Callyspongia sp.
Author(s)
Tian, Li-Wen
Feng, Yunjiang
Shimizu, Yoko
Pfeifer, Tom A
Wellington, Cheryl
Hooper, John NA
Quinn, Ronald J
Year published
2014
Metadata
Show full item recordAbstract
High throughput screening of a pre-fractionated natural product library identified 11 active fractions showing ApoE modulation activity. Mass-directed fractionation of one active crude extract from the Australian marine sponge Callyspongia sp. resulted in the isolation of 13 metabolites, including three new bromotyrosine derivatives, callyspongic acid (1), 3,5-dibromo-4-methoxyphenylpyruvic acid (2), N-acetyl-3-bromo-4-hydroxylphenylethamine (3), and ten known compounds (4-13). The structure elucidation of compounds 1-3 was based on their 1D and 2D NMR and MS spectroscopic data. 3,5-Dibromo-4-methoxyphenylpyruvic acid (2) ...
View more >High throughput screening of a pre-fractionated natural product library identified 11 active fractions showing ApoE modulation activity. Mass-directed fractionation of one active crude extract from the Australian marine sponge Callyspongia sp. resulted in the isolation of 13 metabolites, including three new bromotyrosine derivatives, callyspongic acid (1), 3,5-dibromo-4-methoxyphenylpyruvic acid (2), N-acetyl-3-bromo-4-hydroxylphenylethamine (3), and ten known compounds (4-13). The structure elucidation of compounds 1-3 was based on their 1D and 2D NMR and MS spectroscopic data. 3,5-Dibromo-4-methoxyphenylpyruvic acid (2) showed weak activity in increasing the apolipoprotein E secretion from human CCF-STTG1 cells at the concentration of 40 卮
View less >
View more >High throughput screening of a pre-fractionated natural product library identified 11 active fractions showing ApoE modulation activity. Mass-directed fractionation of one active crude extract from the Australian marine sponge Callyspongia sp. resulted in the isolation of 13 metabolites, including three new bromotyrosine derivatives, callyspongic acid (1), 3,5-dibromo-4-methoxyphenylpyruvic acid (2), N-acetyl-3-bromo-4-hydroxylphenylethamine (3), and ten known compounds (4-13). The structure elucidation of compounds 1-3 was based on their 1D and 2D NMR and MS spectroscopic data. 3,5-Dibromo-4-methoxyphenylpyruvic acid (2) showed weak activity in increasing the apolipoprotein E secretion from human CCF-STTG1 cells at the concentration of 40 卮
View less >
Journal Title
Bioorganic & Medicinal Chemistry Letters
Volume
24
Issue
15
Subject
Medicinal and biomolecular chemistry
Biologically active molecules
Organic chemistry
Pharmacology and pharmaceutical sciences