• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Real-time control of inertial focusing in microfluidics using dielectrophoresis (DEP)

    Thumbnail
    View/Open
    99039_1.pdf (1.158Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Zhang, Jun
    Yan, Sheng
    Alici, Gursel
    Nguyen, Nam-Trung
    Di Carlo, Dino
    Li, Weihua
    Griffith University Author(s)
    Nguyen, Nam-Trung
    Zhang, Jun
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    In this paper we propose a novel hybrid microfluidic device which, for the first time, integrates and fully couples both dielectrophoresis (DEP) and inertial focusing. A DEP force is coupled with inertial lift force to adjust particle equilibrium positions in the vertical direction in real time. The focusing pattern and position of the particles along the horizontal plane can be adjusted concurrently by adjusting their vertical position with DEP forces. The magnitude of secondary flow drag increases dramatically when particles are levitated towards the centre of the channel in the vertical direction. The paper investigates ...
    View more >
    In this paper we propose a novel hybrid microfluidic device which, for the first time, integrates and fully couples both dielectrophoresis (DEP) and inertial focusing. A DEP force is coupled with inertial lift force to adjust particle equilibrium positions in the vertical direction in real time. The focusing pattern and position of the particles along the horizontal plane can be adjusted concurrently by adjusting their vertical position with DEP forces. The magnitude of secondary flow drag increases dramatically when particles are levitated towards the centre of the channel in the vertical direction. The paper investigates the mechanism of this tuneable DEP-inertial microfluidic device analytically and experimentally. The proposed hybrid device possesses the advantages of both DEP and inertial microfluidic devices, working in a high-throughput manner as well as having precise controllability in real-time. This DEP-inertial microfluidic device is potentially a versatile and robust platform for feedback-controlled manipulation and separation of particles and cells.
    View less >
    Journal Title
    RSC Advances
    Volume
    4
    Issue
    107
    DOI
    https://doi.org/10.1039/c4ra13075h
    Copyright Statement
    © 2014 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
    Subject
    Chemical sciences
    Microelectromechanical systems (MEMS)
    Publication URI
    http://hdl.handle.net/10072/65345
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander