Signature Segmentation and Recognition from Scanned Documents

View/ Open
Author(s)
Mandal, Ranju
Roy, Partha Pratim
Pal, Umapada
Blumenstein, Michael
Griffith University Author(s)
Year published
2013
Metadata
Show full item recordAbstract
Signature as a query is important for content-based document image retrieval from a scanned document repository. This paper presents a two-stage approach towards automatic signature segmentation and recognition from scanned document images. In the first stage, signature blocks are segmented from the document using word-wise component extraction and classification. Gradient based features are extracted from each component at the word level to perform the classification task. In the 2nd stage, SIFT (Scale-Invariant Feature Transform) descriptors and Spatial Pyramid Matching (SPM)-based approaches are used for signature ...
View more >Signature as a query is important for content-based document image retrieval from a scanned document repository. This paper presents a two-stage approach towards automatic signature segmentation and recognition from scanned document images. In the first stage, signature blocks are segmented from the document using word-wise component extraction and classification. Gradient based features are extracted from each component at the word level to perform the classification task. In the 2nd stage, SIFT (Scale-Invariant Feature Transform) descriptors and Spatial Pyramid Matching (SPM)-based approaches are used for signature recognition. Support Vector Machines (SVMs) are employed as the classifier for both levels in this experiment. The experiments are performed on the publicly available "Tobacco-800" and GPDS [1] datasets and the results obtained from the experiments are promising.
View less >
View more >Signature as a query is important for content-based document image retrieval from a scanned document repository. This paper presents a two-stage approach towards automatic signature segmentation and recognition from scanned document images. In the first stage, signature blocks are segmented from the document using word-wise component extraction and classification. Gradient based features are extracted from each component at the word level to perform the classification task. In the 2nd stage, SIFT (Scale-Invariant Feature Transform) descriptors and Spatial Pyramid Matching (SPM)-based approaches are used for signature recognition. Support Vector Machines (SVMs) are employed as the classifier for both levels in this experiment. The experiments are performed on the publicly available "Tobacco-800" and GPDS [1] datasets and the results obtained from the experiments are promising.
View less >
Conference Title
2013 13TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA)
Publisher URI
Copyright Statement
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Subject
Pattern Recognition and Data Mining