• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Tissue Engineering of a Vascularized Bone Graft of Critical Size with an Osteogenic and Angiogenic Factor-Based In Vivo Bioreactor

    Author(s)
    Liu, Yanming
    Moller, Bjorn
    Wiltfang, Joerg
    Warnke, Patrick
    Terheyden, Hendrik
    Griffith University Author(s)
    Warnke, Patrick H.
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Engineering a large vascularized bone graft is a much greater challenge than engineering small bone tissues. Although this is essentially feasible through an osteogenic factor-based in vivo bioreactor technique, the ossification needs improving. This study was aimed to investigate the possibility and efficacy of ectopic cultivation of sizeable bone grafts with large angiogenic and osteogenic factor-loaded natural bovine bone mineral (NBBM) scaffolds. For this purpose, six groups of sizeable composite scaffolds were constructed, consisting of a titanium mesh cage of NBBM or a mixture of NBBM/autogenous bone particles (AB), ...
    View more >
    Engineering a large vascularized bone graft is a much greater challenge than engineering small bone tissues. Although this is essentially feasible through an osteogenic factor-based in vivo bioreactor technique, the ossification needs improving. This study was aimed to investigate the possibility and efficacy of ectopic cultivation of sizeable bone grafts with large angiogenic and osteogenic factor-loaded natural bovine bone mineral (NBBM) scaffolds. For this purpose, six groups of sizeable composite scaffolds were constructed, consisting of a titanium mesh cage of NBBM or a mixture of NBBM/autogenous bone particles (AB), which were preloaded with 660?姠recombinant human bone morphogenetic protein-7 (rhBMP-7) and/or 4?姠recombinant human vascular endothelial growth factor165 (rhVEGF165). The scaffolds were implanted in bilateral latissimus dorsi muscles in eight pigs to construct in vivo bioreactors. Sequential fluorescence labeling was then applied to trace bone formation at the early stage. The implants were retrieved 12 weeks later. The undecalcified sections were observed in turn under the fluorescence microscope and light microscope to investigate early stage osteogenesis and histology. Moreover, new bone density (BD) was measured with histomorphometry. Compared with rhBMP-7-delivered NBBM scaffolds, rhVEGF165/rhBMP-7-delivered NBBM scaffolds were with more intense intra-scaffold osteogenesis at the early stage and the ultimate sizeable bone grafts of microstructurally more lamellae and trabeculae, and quantitatively higher BD (31.93% vs. 22.37%, p<0.01). This study demonstrated that as for the endocultivation of a large bone graft with bioactive factor-based in vivo bioreactor technique, dual delivery of rhVEGF165/rhBMP-7 has synergic effects on improving early stage bone formation and subsequently bone quality and quantity of the bone grafts.
    View less >
    Journal Title
    Tissue Engineering: Part A
    DOI
    https://doi.org/10.1089/ten.tea.2013.0653
    Subject
    Biochemistry and cell biology
    Biomedical engineering
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/65476
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander