Dopamine D2 receptor desensitization by dopamine or corticotropin releasing factor in ventral tegmental area neurons is associated with increased glutamate release
Author(s)
Nimitvilai, Sudarat
Herman, Melissa
You, Chang
Arora, Devinder S
McElvain, Maureen A
Roberto, Marisa
Brodie, Mark S
Griffith University Author(s)
Year published
2014
Metadata
Show full item recordAbstract
Neurons of the ventral tegmental area (VTA) are the source of dopaminergic (DAergic) input to important brain regions related to addiction. Prolonged exposure of these VTA neurons to moderate concentrations of dopamine (DA) causes a time-dependent decrease in DA-induced inhibition, a complex desensitization called DA inhibition reversal (DIR). DIR is mediated by conventional protein kinase C (cPKC) through concurrent stimulation of D2 and D1-like DA receptors, or by D2 stimulation concurrent with activation of some Gq-linked receptors. Corticotropin releasing factor (CRF) acts via Gq, and can modulate glutamater neurotransmission ...
View more >Neurons of the ventral tegmental area (VTA) are the source of dopaminergic (DAergic) input to important brain regions related to addiction. Prolonged exposure of these VTA neurons to moderate concentrations of dopamine (DA) causes a time-dependent decrease in DA-induced inhibition, a complex desensitization called DA inhibition reversal (DIR). DIR is mediated by conventional protein kinase C (cPKC) through concurrent stimulation of D2 and D1-like DA receptors, or by D2 stimulation concurrent with activation of some Gq-linked receptors. Corticotropin releasing factor (CRF) acts via Gq, and can modulate glutamater neurotransmission in the VTA. In the present study, we used brain slice electrophysiology to characterize the interaction of DA, glutamate antagonists, and CRF agonists in the induction and maintenance of DIR in the VTA. Glutamate receptor antagonists blocked induction but not maintenance of DIR. Putative blockers of neurotransmitter release and store-operated calcium channels blocked and reversed DIR. CRF and the CRF agonist urocortin reversed inhibition produced by the D2 agonist quinpirole, consistent with our earlier work indicating that Gq activation reverses quinpirole-mediated inhibition. In whole cell recordings, the combination of urocortin and quinpirole, but not either agent alone, increased spontaneous excitatory postsynaptic currents (sEPSCs) in VTA neurons. Likewise, the combination of a D1-like receptor agonist and quinpirole, but not either agent alone, increased sEPSCs in VTA neurons. In summary, desensitization of D2 receptors induced by dopamine or CRF on DAergic VTA neurons is associated with increased glutamatergic signaling in the VTA.
View less >
View more >Neurons of the ventral tegmental area (VTA) are the source of dopaminergic (DAergic) input to important brain regions related to addiction. Prolonged exposure of these VTA neurons to moderate concentrations of dopamine (DA) causes a time-dependent decrease in DA-induced inhibition, a complex desensitization called DA inhibition reversal (DIR). DIR is mediated by conventional protein kinase C (cPKC) through concurrent stimulation of D2 and D1-like DA receptors, or by D2 stimulation concurrent with activation of some Gq-linked receptors. Corticotropin releasing factor (CRF) acts via Gq, and can modulate glutamater neurotransmission in the VTA. In the present study, we used brain slice electrophysiology to characterize the interaction of DA, glutamate antagonists, and CRF agonists in the induction and maintenance of DIR in the VTA. Glutamate receptor antagonists blocked induction but not maintenance of DIR. Putative blockers of neurotransmitter release and store-operated calcium channels blocked and reversed DIR. CRF and the CRF agonist urocortin reversed inhibition produced by the D2 agonist quinpirole, consistent with our earlier work indicating that Gq activation reverses quinpirole-mediated inhibition. In whole cell recordings, the combination of urocortin and quinpirole, but not either agent alone, increased spontaneous excitatory postsynaptic currents (sEPSCs) in VTA neurons. Likewise, the combination of a D1-like receptor agonist and quinpirole, but not either agent alone, increased sEPSCs in VTA neurons. In summary, desensitization of D2 receptors induced by dopamine or CRF on DAergic VTA neurons is associated with increased glutamatergic signaling in the VTA.
View less >
Journal Title
Neuropharmacology
Volume
82
Subject
Neurosciences
Central nervous system
Pharmacology and pharmaceutical sciences