• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Development of prediction model for Doweled joint concrete pavement using three-dimensional finite element analysis

    Author(s)
    Sii, HB
    Chai, GW
    van Staden, R
    Guan, H
    Griffith University Author(s)
    Guan, Hong
    Chai, Gary K.
    Van Staden, Rudi C.
    Sii, Perry B.
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    The load transfer mechanism between the dowel and the concrete is a complex phenomenon. This mechanism depends mainly on a parameter known as the modulus of dowel support (K), the value of which can be determined by load testing. A high modulus of dowel support value indicates a good contact between the concrete and the steel dowel. There is a lack of sound approach to identify with any degree of accuracy the modulus of dowel support (k), which makes it difficult to rely on the analytically developed formulas that are sensitive to its value. The obtained numerical results were validated with classical analytical solutions ...
    View more >
    The load transfer mechanism between the dowel and the concrete is a complex phenomenon. This mechanism depends mainly on a parameter known as the modulus of dowel support (K), the value of which can be determined by load testing. A high modulus of dowel support value indicates a good contact between the concrete and the steel dowel. There is a lack of sound approach to identify with any degree of accuracy the modulus of dowel support (k), which makes it difficult to rely on the analytically developed formulas that are sensitive to its value. The obtained numerical results were validated with classical analytical solutions of shear and moment along the dowel. The group action of the dowel bar system was examined and useful relationships have been developed for estimation of the relative load shared by individual dowel bars. These useful relationships have been used to developed prediction Model to predict the shear force in dowel group action of dowel bar system and deflection at the loading nodal point. The prediction Model results for shear force in dowel group action of dowel bar system and deflection at the loading nodal point were relatively close to the F.E. Model results, with the different range between 2.2% to 7%.
    View less >
    Journal Title
    Applied Mechanics and Materials
    Volume
    587-589
    DOI
    https://doi.org/10.4028/www.scientific.net/AMM.587-589.1047
    Subject
    Civil Engineering not elsewhere classified
    Engineering
    Publication URI
    http://hdl.handle.net/10072/65587
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander