• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Enhanced Hydrogen Storage Kinetics and Stability by Synergistic Effects of in Situ Formed CeH2.73 and Ni in CeH2.73-MgH2‑Ni Nanocomposites

    Author(s)
    Ouyang, LZ
    Yang, XS
    Zhu, M
    Liu, JW
    Dong, HW
    Sun, DL
    Zou, J
    Yao, XD
    Griffith University Author(s)
    Yao, Xiangdong
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Mg-based materials are promising candidates for high capacity hydrogen storage. However, their poor hydrogenation/dehydrogenation kinetics and high desorption temperature are the main obstacles to their applications. This paper reports a method for in situ formation of cycle stable CeH2.73-MgH2-Ni nanocomposites, from the hydrogenation of as-melt Mg80Ce18Ni2 alloy, with excellent hydrogen storage performance. The nanocomposites demonstrate reversible hydrogen storage capacity of more than 4.0 wt %, at a low desorption temperature with fast kinetics and long cycle life. The temperature for the full hydrogenation/dehydrogenation ...
    View more >
    Mg-based materials are promising candidates for high capacity hydrogen storage. However, their poor hydrogenation/dehydrogenation kinetics and high desorption temperature are the main obstacles to their applications. This paper reports a method for in situ formation of cycle stable CeH2.73-MgH2-Ni nanocomposites, from the hydrogenation of as-melt Mg80Ce18Ni2 alloy, with excellent hydrogen storage performance. The nanocomposites demonstrate reversible hydrogen storage capacity of more than 4.0 wt %, at a low desorption temperature with fast kinetics and long cycle life. The temperature for the full hydrogenation/dehydrogenation cycle of the composites is significantly decreased to 505 K, which is about 100 K lower than that for pure Mg. The hydrogen desorption activation energy is 63 ᠳ kJ/mol H2 for the composites, which is significantly lower than those of Mg3Ce alloy and pure Mg (104 ᠷ and 158 ᠲ kJ/mol H2, respectively). X-ray diffraction and transmission electron microscopy have been used to reveal the mechanism that delivers this excellent cycle stability and fast hydriding/ dehydriding kinetics. It is found that the hydriding/dehydriding process is catalyzed by the combination of in situ formed extremely fine CeH2/CeH2.73 and Ni to Mg/MgH2. In addition, this nanocomposite structure can effectively suppress Mg/MgH2 grain growth and enable the material to maintain its high performance for more than 500 hydrogenation dehydrogenation cycles.
    View less >
    Journal Title
    The Journal of Physical Chemistry C
    Volume
    118
    Issue
    15
    DOI
    https://doi.org/10.1021/jp500439n
    Copyright Statement
    Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the authors for more information.
    Subject
    Other physical sciences not elsewhere classified
    Chemical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/65605
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander