Analysis of stochastic gradient tracking of time-varying polynomial Wiener systems

View/ Open
Author(s)
Celka, Patrick
Griffith University Author(s)
Year published
2000
Metadata
Show full item recordAbstract
This paper presents analytical and Monte Carlo results for a stochastic gradient adaptive scheme that tracks a time-varying polynomial Wiener (1958) system [i.e., a linear time-invariant (LTI) filter with memory followed by a time-varying memoryless polynomial nonlinearity]. The adaptive scheme consists of two phases: (1) estimation of the LTI memory using the LMS algorithm and (2) tracking the time-varying polynomial-type nonlinearity using a second coupled gradient search for the polynomial coefficients. The time-varying polynomial nonlinearity causes a time-varying scaling for the optimum Wiener filter for Phase 1. These ...
View more >This paper presents analytical and Monte Carlo results for a stochastic gradient adaptive scheme that tracks a time-varying polynomial Wiener (1958) system [i.e., a linear time-invariant (LTI) filter with memory followed by a time-varying memoryless polynomial nonlinearity]. The adaptive scheme consists of two phases: (1) estimation of the LTI memory using the LMS algorithm and (2) tracking the time-varying polynomial-type nonlinearity using a second coupled gradient search for the polynomial coefficients. The time-varying polynomial nonlinearity causes a time-varying scaling for the optimum Wiener filter for Phase 1. These time variations are removed for Phase 2 using a novel coupling scheme to Phase 1. The analysis for Gaussian data includes recursions for the mean behavior of the LMS algorithm for estimating and tracking the optimum Wiener filter for Phase 1 for several different time-varying polynomial nonlinearities and recursions for the mean behavior of the stochastic gradient algorithm for Phase 2. The polynomial coefficients are shown to be accurately tracked. Monte Carlo simulations confirm the theoretical predictions and support the underlying statistical assumptions
View less >
View more >This paper presents analytical and Monte Carlo results for a stochastic gradient adaptive scheme that tracks a time-varying polynomial Wiener (1958) system [i.e., a linear time-invariant (LTI) filter with memory followed by a time-varying memoryless polynomial nonlinearity]. The adaptive scheme consists of two phases: (1) estimation of the LTI memory using the LMS algorithm and (2) tracking the time-varying polynomial-type nonlinearity using a second coupled gradient search for the polynomial coefficients. The time-varying polynomial nonlinearity causes a time-varying scaling for the optimum Wiener filter for Phase 1. These time variations are removed for Phase 2 using a novel coupling scheme to Phase 1. The analysis for Gaussian data includes recursions for the mean behavior of the LMS algorithm for estimating and tracking the optimum Wiener filter for Phase 1 for several different time-varying polynomial nonlinearities and recursions for the mean behavior of the stochastic gradient algorithm for Phase 2. The polynomial coefficients are shown to be accurately tracked. Monte Carlo simulations confirm the theoretical predictions and support the underlying statistical assumptions
View less >
Journal Title
IEEE Transaction on Signal Processing
Volume
48
Copyright Statement
© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Subject
PRE2009-Signal Processing