• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Biogeography-based optimisation with chaos

    Thumbnail
    View/Open
    100051_1.pdf (253.2Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Saremi, Shahrzad
    Mirjalili, Seyedali
    Lewis, Andrew
    Griffith University Author(s)
    Lewis, Andrew J.
    Mirjalili, Seyedali
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    The biogeography-based optimisation (BBO) algorithm is a novel evolutionary algorithm inspired by biogeography. Similarly, to other evolutionary algorithms, entrapment in local optima and slow convergence speed are two probable problems it encounters in solving challenging real problems. Due to the novelty of this algorithm, however, there is little in the literature regarding alleviating these two problems. Chaotic maps are one of the best methods to improve the performance of evolutionary algorithms in terms of both local optima avoidance and convergence speed. In this study, we utilise ten chaotic maps to enhance the ...
    View more >
    The biogeography-based optimisation (BBO) algorithm is a novel evolutionary algorithm inspired by biogeography. Similarly, to other evolutionary algorithms, entrapment in local optima and slow convergence speed are two probable problems it encounters in solving challenging real problems. Due to the novelty of this algorithm, however, there is little in the literature regarding alleviating these two problems. Chaotic maps are one of the best methods to improve the performance of evolutionary algorithms in terms of both local optima avoidance and convergence speed. In this study, we utilise ten chaotic maps to enhance the performance of the BBO algorithm. The chaotic maps are employed to define selection, emigration, and mutation probabilities. The proposed chaotic BBO algorithms are benchmarked on ten test functions. The results demonstrate that the chaotic maps (especially Gauss/mouse map) are able to significantly boost the performance of BBO. In addition, the results show that the combination of chaotic selection and emigration operators results in the highest performance.
    View less >
    Journal Title
    Neural Computing And Applications
    Volume
    25
    Issue
    5
    DOI
    https://doi.org/10.1007/s00521-014-1597-x
    Copyright Statement
    © 2014 The Natural Computing Applications Forum. Published by Springer London. This is an electronic version of an article published in Neural Computing and Applications, Volume 25, Issue 5, pp 1077–1097, 2014. Neural Computing and Applications is available online at: http://link.springer.com/ with the open URL of your article.
    Subject
    Optimisation
    Cognitive and computational psychology
    Publication URI
    http://hdl.handle.net/10072/66161
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander