• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Quantum filtering of a thermal master equation with a purified reservoir

    Thumbnail
    View/Open
    99950_1.pdf (378.4Kb)
    Author(s)
    Genoni, Marco G
    Mancini, Stefano
    Wiseman, Howard M
    Serafini, Alessio
    Griffith University Author(s)
    Wiseman, Howard M.
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    We consider a system subject to a quantum optical master equation at finite temperature and study a class of conditional dynamics obtained by monitoring its totally or partially purified environment. More specifically, drawing from the notion that the thermal state of the environment may be regarded as the local state of a lossy and noisy two-mode squeezed state, we consider conditional dynamics ("unravellings") resulting from the homodyne detection of the two modes of such a state. Thus, we identify a class of unravellings parametrized by the loss rate suffered by the environmental two-mode state, which interpolate between ...
    View more >
    We consider a system subject to a quantum optical master equation at finite temperature and study a class of conditional dynamics obtained by monitoring its totally or partially purified environment. More specifically, drawing from the notion that the thermal state of the environment may be regarded as the local state of a lossy and noisy two-mode squeezed state, we consider conditional dynamics ("unravellings") resulting from the homodyne detection of the two modes of such a state. Thus, we identify a class of unravellings parametrized by the loss rate suffered by the environmental two-mode state, which interpolate between direct detection of the environmental mode alone (occurring for total loss, whereby no correlation between the two environmental modes is left) and full access to the purification of the bath (occurring when no loss is acting and the two-mode state of the environment is pure). We hence show that, while direct detection of the bath is not able to reach the maximal steady-state squeezing allowed by general-dyne unravellings, such optimal values can be obtained when a fully purified bath is accessible. More generally we show that, within our framework, any degree of access to the bath purification improves the performance of filtering protocols in terms of achievable squeezing and entanglement.
    View less >
    Journal Title
    Physical Review A
    Volume
    90
    DOI
    https://doi.org/10.1103/PhysRevA.90.063826
    Copyright Statement
    © 2014 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Mathematical sciences
    Physical sciences
    Quantum optics and quantum optomechanics
    Chemical sciences
    Publication URI
    http://hdl.handle.net/10072/66314
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander