Show simple item record

dc.contributor.authorCraig, Andrew P
dc.contributor.authorHanger, Jon
dc.contributor.authorLoader, Jo
dc.contributor.authorEllis, William AH
dc.contributor.authorCallaghan, John
dc.contributor.authorDexter, Cathryn
dc.contributor.authorJones, Darryl
dc.contributor.authorBeagley, Kenneth W
dc.contributor.authorTimms, Peter
dc.contributor.authorWilson, David P
dc.date.accessioned2017-05-03T11:23:28Z
dc.date.available2017-05-03T11:23:28Z
dc.date.issued2014
dc.identifier.issn0264-410X
dc.identifier.doi10.1016/j.vaccine.2014.05.049
dc.identifier.urihttp://hdl.handle.net/10072/66329
dc.description.abstractBackground Many koala populations around Australia are in serious decline, with a substantial component of this decline in some Southeast Queensland populations attributed to the impact of Chlamydia. A Chlamydia vaccine for koalas is in development and has shown promise in early trials. This study contributes to implementation preparedness by simulating vaccination strategies designed to reverse population decline and by identifying which age and sex category it would be most effective to target. Methods We used field data to inform the development and parameterisation of an individual-based stochastic simulation model of a koala population endemic with Chlamydia. The model took into account transmission, morbidity and mortality caused by Chlamydia infections. We calibrated the model to characteristics of typical Southeast Queensland koala populations. As there is uncertainty about the effectiveness of the vaccine in real-world settings, a variety of potential vaccine efficacies, half-lives and dosing schedules were simulated. Results Assuming other threats remain constant, it is expected that current population declines could be reversed in around 5-6 years if female koalas aged 1-2 years are targeted, average vaccine protective efficacy is 75%, and vaccine coverage is around 10% per year. At lower vaccine efficacies the immunological effects of boosting become important: at 45% vaccine efficacy population decline is predicted to reverse in 6 years under optimistic boosting assumptions but in 9 years under pessimistic boosting assumptions. Terminating a successful vaccination programme at 5 years would lead to a rise in Chlamydia prevalence towards pre-vaccination levels. Conclusion For a range of vaccine efficacy levels it is projected that population decline due to endemic Chlamydia can be reversed under realistic dosing schedules, potentially in just 5 years. However, a vaccination programme might need to continue indefinitely in order to maintain Chlamydia prevalence at a sufficiently low level for population growth to continue.
dc.description.peerreviewedYes
dc.description.publicationstatusYes
dc.languageEnglish
dc.language.isoeng
dc.publisherElsevier
dc.publisher.placeUnited Kingdom
dc.relation.ispartofstudentpublicationN
dc.relation.ispartofpagefrom4163
dc.relation.ispartofpageto4170
dc.relation.ispartofjournalVaccine
dc.relation.ispartofvolume32
dc.rights.retentionY
dc.subject.fieldofresearchBiological sciences
dc.subject.fieldofresearchOther biological sciences not elsewhere classified
dc.subject.fieldofresearchAgricultural, veterinary and food sciences
dc.subject.fieldofresearchBiomedical and clinical sciences
dc.subject.fieldofresearchcode31
dc.subject.fieldofresearchcode319999
dc.subject.fieldofresearchcode30
dc.subject.fieldofresearchcode32
dc.titleA 5-year Chlamydia vaccination programme could reverse disease-related koala population decline: Predictions from a mathematical model using field data
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.hasfulltextNo Full Text
gro.griffith.authorJones, Darryl N.


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record