Inhibition of platelet mediated arterial thrombosis and platelet granule exocytosis by 3'4'-dihydroxyflavonol and quercetin

View/ Open
Author(s)
Mosawy, Sapha
Jackson, Denise E
Woodman, Owen L
Linden, Matthew D
Griffith University Author(s)
Year published
2013
Metadata
Show full item recordAbstract
Flavonols are polyphenolic compounds with broad-spectrum kinase inhibitory, as well as potent anti-oxidant and anti-inflammatory properties. Anti-platelet potential of quercetin (Que) and several related flavonoids have been reported; however, few studies have assessed the ability of flavonols to inhibit exocytosis of different platelet granules or to inhibit thrombus formation in vivo. 3',4'-Dihydroxyflavonol (DiOHF) is a flavonol which is structurally related to Que and has been shown to have greater anti-oxidant capacity and to improve the endothelial function in the context of diabetes and ischaemia/reperfusion injury. ...
View more >Flavonols are polyphenolic compounds with broad-spectrum kinase inhibitory, as well as potent anti-oxidant and anti-inflammatory properties. Anti-platelet potential of quercetin (Que) and several related flavonoids have been reported; however, few studies have assessed the ability of flavonols to inhibit exocytosis of different platelet granules or to inhibit thrombus formation in vivo. 3',4'-Dihydroxyflavonol (DiOHF) is a flavonol which is structurally related to Que and has been shown to have greater anti-oxidant capacity and to improve the endothelial function in the context of diabetes and ischaemia/reperfusion injury. While the structural similarity to Que suggests DiOHF may have a potential to inhibit platelet function, no studies have assessed the anti-platelet potential of DiOHF. We therefore investigated platelet granule inhibition and potential to delay arterial thrombosis by Que and DiOHF. Both Que and DiOHF showed inhibition of collagen, adenosine diphosphate and arachidonic acid stimulated platelet aggregation, agonist-induced GPIIb/IIIa activation as demonstrated by PAC-1 and fibrinogen binding. While both flavonols inhibited agonist-induced granule exocytosis, greater inhibition of dense granule exocytosis occurred with DiOHF as measured by both ATP release and flow cytometry. In contrast, while Que inhibited agonist-induced P-selectin expression, as measured by both platelet surface P-selectin expression and upregulation of surface GPIIIa expression, inhibition by DiOHF was not significant for either parameter. C57BL/6 mice treated with 6 mg kg(-1) IV Que or DiOHF maintained greater blood flow following FeCl3-induced carotid artery injury when compared to the vehicle control. We provide evidence that Que and DiOHF improve blood flow following arterial injury in part by attenuating platelet granule exocytosis.
View less >
View more >Flavonols are polyphenolic compounds with broad-spectrum kinase inhibitory, as well as potent anti-oxidant and anti-inflammatory properties. Anti-platelet potential of quercetin (Que) and several related flavonoids have been reported; however, few studies have assessed the ability of flavonols to inhibit exocytosis of different platelet granules or to inhibit thrombus formation in vivo. 3',4'-Dihydroxyflavonol (DiOHF) is a flavonol which is structurally related to Que and has been shown to have greater anti-oxidant capacity and to improve the endothelial function in the context of diabetes and ischaemia/reperfusion injury. While the structural similarity to Que suggests DiOHF may have a potential to inhibit platelet function, no studies have assessed the anti-platelet potential of DiOHF. We therefore investigated platelet granule inhibition and potential to delay arterial thrombosis by Que and DiOHF. Both Que and DiOHF showed inhibition of collagen, adenosine diphosphate and arachidonic acid stimulated platelet aggregation, agonist-induced GPIIb/IIIa activation as demonstrated by PAC-1 and fibrinogen binding. While both flavonols inhibited agonist-induced granule exocytosis, greater inhibition of dense granule exocytosis occurred with DiOHF as measured by both ATP release and flow cytometry. In contrast, while Que inhibited agonist-induced P-selectin expression, as measured by both platelet surface P-selectin expression and upregulation of surface GPIIIa expression, inhibition by DiOHF was not significant for either parameter. C57BL/6 mice treated with 6 mg kg(-1) IV Que or DiOHF maintained greater blood flow following FeCl3-induced carotid artery injury when compared to the vehicle control. We provide evidence that Que and DiOHF improve blood flow following arterial injury in part by attenuating platelet granule exocytosis.
View less >
Journal Title
Platelets
Volume
24
Issue
8
Copyright Statement
© 2013 Informa Healthcare. This is an electronic version of an article published in Platelets, Vol. 24, No. 8, 2013, Pages 594-604. Platelets is available online at: http://informahealthcare.com with the open URL of your article.
Subject
Cardiovascular medicine and haematology not elsewhere classified
Clinical sciences
Medical physiology