• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effects of high electric field and elevated-temperature bias stressing on radiation response in power VDMOSFETs

    Author(s)
    Stojadinovic, N
    Manic, I
    Djoric-Veljkovic, S
    Davidovic, V
    Golubovic, S
    Dimitrijev, S
    Griffith University Author(s)
    Dimitrijev, Sima
    Year published
    2002
    Metadata
    Show full item record
    Abstract
    The effects of pre-irradiation high electric field and elevated-temperature bias stressing on radiation response of power VDMOSFETs have been investigated. Compared to unstressed devices, larger irradiation induced threshold voltage shift and mobility reduction in high electric field stressed devices have been observed, clearly demonstrating inapplicability of electrical stressing for radiation hardening of power MOSFETs. On the other hand, larger irradiation induced threshold voltage shift in elevated-temperature bias stressed, and more considerable mobility reduction in unstressed devices have been observed, confirming the ...
    View more >
    The effects of pre-irradiation high electric field and elevated-temperature bias stressing on radiation response of power VDMOSFETs have been investigated. Compared to unstressed devices, larger irradiation induced threshold voltage shift and mobility reduction in high electric field stressed devices have been observed, clearly demonstrating inapplicability of electrical stressing for radiation hardening of power MOSFETs. On the other hand, larger irradiation induced threshold voltage shift in elevated-temperature bias stressed, and more considerable mobility reduction in unstressed devices have been observed, confirming the necessity of performing the radiation qualification testing after the reliability screening of these devices. The underlying changes of gate oxide-trapped charge and interface trap densities have been calculated and analysed in terms of the mechanisms responsible for pre-irradiation stress effects.
    View less >
    Journal Title
    Microelectronics Reliability
    Volume
    42
    DOI
    https://doi.org/10.1016/S0026-2714(02)00039-2
    Subject
    Electrical and Electronic Engineering
    Publication URI
    http://hdl.handle.net/10072/6650
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander