• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Genetic algorithm based detection of general linear biclusters

    Thumbnail
    View/Open
    101515_1.pdf (162.3Kb)
    Author(s)
    To, Cuong
    Liew, Alan Wee-Chung
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Clustering methods classify patterns into clusters using the entire set of attributes of patterns in the similarity measurement. In plenty of cases, patterns are similar under a subset of attributes only. The class of methods that cluster patterns based on subsets of attributes is called biclustering. Biclustering simultaneously groups on both rows and columns of a data matrix and has been applied to various fields, especially gene expression data. However, the biclustering problem is inherently intractable and computationally complex. In recent years, several biclustering algorithms which are based on linear coherent model ...
    View more >
    Clustering methods classify patterns into clusters using the entire set of attributes of patterns in the similarity measurement. In plenty of cases, patterns are similar under a subset of attributes only. The class of methods that cluster patterns based on subsets of attributes is called biclustering. Biclustering simultaneously groups on both rows and columns of a data matrix and has been applied to various fields, especially gene expression data. However, the biclustering problem is inherently intractable and computationally complex. In recent years, several biclustering algorithms which are based on linear coherent model have been proposed. In this paper, we introduce a novel GA-based algorithm that uses hyperplane to describe the linear relationships between rows (genes) in a sub-matrix (bicluster). The performance of our algorithm is tested via simulated data, gene expression data and compared with several other bicluster methods.
    View less >
    Conference Title
    PROCEEDINGS OF 2014 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2
    Volume
    2
    Publisher URI
    http://www.icmlc.com/ICMLC/formerICMLC_2014.html
    DOI
    https://doi.org/10.1109/ICMLC.2014.7009667
    Copyright Statement
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Neural, Evolutionary and Fuzzy Computation
    Publication URI
    http://hdl.handle.net/10072/66705
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander