Protein fold recognition by alignment of amino acid residues using kernelized dynamic time warping

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Lyons, James
Biswas, Neela
Sharma, Alok
Dehzangi, Abdollah
Paliwal, Kuldip K
Griffith University Author(s)
Year published
2014
Metadata
Show full item recordAbstract
In protein fold recognition, a protein is classified into one of its folds. The recognition of a protein fold can be done by employing feature extraction methods to extract relevant information from protein sequences and then by using a classifier to accurately recognize novel protein sequences. In the past, several feature extraction methods have been developed but with limited recognition accuracy only. Protein sequences of varying lengths share the same fold and therefore they are very similar (in a fold) if aligned properly. To this, we develop an amino acid alignment method to extract important features from protein ...
View more >In protein fold recognition, a protein is classified into one of its folds. The recognition of a protein fold can be done by employing feature extraction methods to extract relevant information from protein sequences and then by using a classifier to accurately recognize novel protein sequences. In the past, several feature extraction methods have been developed but with limited recognition accuracy only. Protein sequences of varying lengths share the same fold and therefore they are very similar (in a fold) if aligned properly. To this, we develop an amino acid alignment method to extract important features from protein sequences by computing dissimilarity distances between proteins. This is done by measuring distance between two respective position specific scoring matrices of protein sequences which is used in a support vector machine framework. We demonstrated the effectiveness of the proposed method on several benchmark datasets. The method shows significant improvement in the fold recognition performance which is in the range of 4.3-7.6% compared to several other existing feature extraction methods.
View less >
View more >In protein fold recognition, a protein is classified into one of its folds. The recognition of a protein fold can be done by employing feature extraction methods to extract relevant information from protein sequences and then by using a classifier to accurately recognize novel protein sequences. In the past, several feature extraction methods have been developed but with limited recognition accuracy only. Protein sequences of varying lengths share the same fold and therefore they are very similar (in a fold) if aligned properly. To this, we develop an amino acid alignment method to extract important features from protein sequences by computing dissimilarity distances between proteins. This is done by measuring distance between two respective position specific scoring matrices of protein sequences which is used in a support vector machine framework. We demonstrated the effectiveness of the proposed method on several benchmark datasets. The method shows significant improvement in the fold recognition performance which is in the range of 4.3-7.6% compared to several other existing feature extraction methods.
View less >
Journal Title
Journal of Theoretical Biology
Volume
354
Copyright Statement
© 2014 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Subject
Mathematical sciences
Biological sciences
Information and computing sciences