• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Missing Value Imputation for the Analysis of Incomplete Traffic Accident Data

    Thumbnail
    View/Open
    DebPUB1.pdf (285.5Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Deb, R
    Liew, AWC
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Road traffic accidents are a major public health concern, resulting in an estimated 1.3 million deaths and 52 million injuries worldwide each year. All the developed and developing countries suffer from the consequences of increase in both human and vehicle population. Therefore, methods to reduce accident severity are of great interest to traffic agencies and the public at large. To analysis the traffic accident factors effectively we need a complete traffic accident historical database without missing data. Road accident fatality rate depends on many factors and it is a very challenging task to investigate the dependencies ...
    View more >
    Road traffic accidents are a major public health concern, resulting in an estimated 1.3 million deaths and 52 million injuries worldwide each year. All the developed and developing countries suffer from the consequences of increase in both human and vehicle population. Therefore, methods to reduce accident severity are of great interest to traffic agencies and the public at large. To analysis the traffic accident factors effectively we need a complete traffic accident historical database without missing data. Road accident fatality rate depends on many factors and it is a very challenging task to investigate the dependencies between the attributes because of the many environmental and road accident factors. Any missing data in the database could obscure the discovery of important factors and lead to invalid conclusions. In order to make the traffic accident datasets useful for analysis, it should be preprocessed properly. In this paper, we present a novel method based on decision tree and imputed value sampling based on correlation measure for the imputation of missing values to improve the quality of the traffic accident data. We applied our algorithm to the publicly available large traffic accident database of United States (explore.data.gov), which is the largest open federal database in United States. We compare our algorithm with three existing imputation methods using three evaluation criteria, i.e. mean absolute error, coefficient of determination and root mean square error. Our results indicate that the proposed method performs significantly better than the three existing algorithms.
    View less >
    Conference Title
    Communications in Computer and Information Science
    Volume
    481
    Publisher URI
    http://www.icmlc.com
    DOI
    https://doi.org/10.1007/978-3-662-45652-1_28
    Copyright Statement
    © 2014 Springer Berlin/Heidelberg. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. The original publication is available at www.springerlink.com
    Subject
    Pattern Recognition and Data Mining
    Publication URI
    http://hdl.handle.net/10072/66724
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander