• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Gradient-Angular-Features for Word-Wise Video Script Identification

    Thumbnail
    View/Open
    101867_1.pdf (616.3Kb)
    Author(s)
    Shivakumara, Palaiahnakote
    Sharma, Nabin
    Pal, Umapada
    Blumenstein, Michael
    Tan, Chew Lim
    Griffith University Author(s)
    Blumenstein, Michael M.
    Sharma, Nabin
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Script identification at the word level is challenging because of complex backgrounds and low resolution of video. The presence of graphics and scene text in video makes the problem more challenging. In this paper, we employ gradient angle segmentation on words from video text lines. This paper presents new Gradient-Angular-Features (GAF) for video script identification, namely, Arabic,Chinese, English, Japanese, Korean and Tamil. This work enables us to select an appropriate OCR when the frame has words of multi-scripts. We employ gradient directional features for segmenting words from video text lines. For each segmented ...
    View more >
    Script identification at the word level is challenging because of complex backgrounds and low resolution of video. The presence of graphics and scene text in video makes the problem more challenging. In this paper, we employ gradient angle segmentation on words from video text lines. This paper presents new Gradient-Angular-Features (GAF) for video script identification, namely, Arabic,Chinese, English, Japanese, Korean and Tamil. This work enables us to select an appropriate OCR when the frame has words of multi-scripts. We employ gradient directional features for segmenting words from video text lines. For each segmented word, we study the gradient information in effective ways to identify text candidates. The skeleton of the text candidates is analyzed to identify Potential Text Candidates (PTC) by filtering out unwanted text candidates. We propose novel GAF for the PTC to study the structure of the components in the form of cursiveness and softness. The histogram operation on the GAF is performed in different ways to obtain discriminative features. The method is evaluated on 760 words of six scripts having low contrast, complex background, different font sizes, etc. in terms of the classification rate and is compared with an existing method to show the effectiveness of the method. We achieve 88.2% average classification rate.
    View less >
    Conference Title
    Pattern Recognition (ICPR), 2014 22nd International Conference on
    Publisher URI
    http://www.icpr2014.org
    DOI
    https://doi.org/10.1109/ICPR.2014.534
    Copyright Statement
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Computer vision
    Publication URI
    http://hdl.handle.net/10072/66733
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander