Gradient-Angular-Features for Word-Wise Video Script Identification

View/ Open
Author(s)
Shivakumara, Palaiahnakote
Sharma, Nabin
Pal, Umapada
Blumenstein, Michael
Tan, Chew Lim
Year published
2014
Metadata
Show full item recordAbstract
Script identification at the word level is challenging because of complex backgrounds and low resolution of video. The presence of graphics and scene text in video makes the problem more challenging. In this paper, we employ gradient angle segmentation on words from video text lines. This paper presents new Gradient-Angular-Features (GAF) for video script identification, namely, Arabic,Chinese, English, Japanese, Korean and Tamil. This work enables us to select an appropriate OCR when the frame has words of multi-scripts. We employ gradient directional features for segmenting words from video text lines. For each segmented ...
View more >Script identification at the word level is challenging because of complex backgrounds and low resolution of video. The presence of graphics and scene text in video makes the problem more challenging. In this paper, we employ gradient angle segmentation on words from video text lines. This paper presents new Gradient-Angular-Features (GAF) for video script identification, namely, Arabic,Chinese, English, Japanese, Korean and Tamil. This work enables us to select an appropriate OCR when the frame has words of multi-scripts. We employ gradient directional features for segmenting words from video text lines. For each segmented word, we study the gradient information in effective ways to identify text candidates. The skeleton of the text candidates is analyzed to identify Potential Text Candidates (PTC) by filtering out unwanted text candidates. We propose novel GAF for the PTC to study the structure of the components in the form of cursiveness and softness. The histogram operation on the GAF is performed in different ways to obtain discriminative features. The method is evaluated on 760 words of six scripts having low contrast, complex background, different font sizes, etc. in terms of the classification rate and is compared with an existing method to show the effectiveness of the method. We achieve 88.2% average classification rate.
View less >
View more >Script identification at the word level is challenging because of complex backgrounds and low resolution of video. The presence of graphics and scene text in video makes the problem more challenging. In this paper, we employ gradient angle segmentation on words from video text lines. This paper presents new Gradient-Angular-Features (GAF) for video script identification, namely, Arabic,Chinese, English, Japanese, Korean and Tamil. This work enables us to select an appropriate OCR when the frame has words of multi-scripts. We employ gradient directional features for segmenting words from video text lines. For each segmented word, we study the gradient information in effective ways to identify text candidates. The skeleton of the text candidates is analyzed to identify Potential Text Candidates (PTC) by filtering out unwanted text candidates. We propose novel GAF for the PTC to study the structure of the components in the form of cursiveness and softness. The histogram operation on the GAF is performed in different ways to obtain discriminative features. The method is evaluated on 760 words of six scripts having low contrast, complex background, different font sizes, etc. in terms of the classification rate and is compared with an existing method to show the effectiveness of the method. We achieve 88.2% average classification rate.
View less >
Conference Title
Pattern Recognition (ICPR), 2014 22nd International Conference on
Publisher URI
Copyright Statement
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Subject
Computer vision