• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Bioindicator Assessment Framework of River Ecosystem Health and the Detection of Factors Influencing the Health of the Huai River Basin, China

    Thumbnail
    View/Open
    100853_1.pdf (672.4Kb)
    Author(s)
    Xia, Jun
    Zhang, Yongyong
    Zhao, Changsen
    Bunn, Stuart E
    Griffith University Author(s)
    Bunn, Stuart E.
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    River ecosystem health assessments are a hot topic in global water resources management. The Huai River Basin is a representative basin faced with serious environmental problems due to high water pollution and numerous water projects. Comprehensive investigation of the factors affecting river ecosystem health is an urgent precursor to the successful management of the Huai River Basin. Based on a series of aquatic ecosystem indicators, monitoring, and standards, such as phytoplankton, zooplankton, and benthic macroinvertebrate data, an assessment framework of river ecosystem health is proposed using a multistep gray correlation ...
    View more >
    River ecosystem health assessments are a hot topic in global water resources management. The Huai River Basin is a representative basin faced with serious environmental problems due to high water pollution and numerous water projects. Comprehensive investigation of the factors affecting river ecosystem health is an urgent precursor to the successful management of the Huai River Basin. Based on a series of aquatic ecosystem indicators, monitoring, and standards, such as phytoplankton, zooplankton, and benthic macroinvertebrate data, an assessment framework of river ecosystem health is proposed using a multistep gray correlation evaluation method. Environmental impact factors including climate, land cover, edaphic factors, hydrology, water projects, and water quality were identified using the Kruskal-Wallis test and distance-based redundancy analysis method. The ecosystem was found to be subhealthy with 44% (31/71) of sites in a healthy condition, 51% (36/71) subhealthy, and 5% (4/71) unhealthy. Climate and hydrology were the dominant factors that together contributed 37.5, 24.1, and 6.9% of the variation in phytoplankton, zooplankton, and benthic macroinvertebrates, respectively. The main variables affecting variation were minimum temperature, relative humidity, solar radiation, and the magnitude, frequency, duration, and timing of monthly runoff. Together, these variables explained 24.5% of the variation in the ecosystem health of the whole river. Thus, to improve river ecosystem health in the basin, the regulation of dams and sluices should give priority to ecological outcomes, and the threat of climate change should not be underestimated. This paper provides a blueprint for ongoing ecological monitoring and restoration programs in China, and is expected to be a successful case and reference to transition from water quantity management to river health management in the Huai River Basin.
    View less >
    Journal Title
    Journal of Hydrologic Engineering
    Volume
    19
    Issue
    8
    DOI
    https://doi.org/10.1061/(ASCE)HE.1943-5584.0000989
    Copyright Statement
    © 2014 American Society of Civil Engineers (ASCE). This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Ecosystem function
    Civil engineering
    Publication URI
    http://hdl.handle.net/10072/66836
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander