Proposing a highly accurate protein structural class predictor using segmentation-based features

View/ Open
Author(s)
Dehzangi, Abdollah
Paliwal, Kuldip
Lyons, James
Sharma, Alok
Sattar, Abdul
Year published
2014
Metadata
Show full item recordAbstract
Background Prediction of the structural classes of proteins can provide important information about their functionalities as well as their major tertiary structures. It is also considered as an important step towards protein structure prediction problem. Despite all the efforts have been made so far, finding a fast and accurate computational approach to solve protein structural class prediction problem still remains a challenging problem in bioinformatics and computational biology. Results In this study we propose segmented distribution and segmented auto covariance feature extraction methods to capture local and global ...
View more >Background Prediction of the structural classes of proteins can provide important information about their functionalities as well as their major tertiary structures. It is also considered as an important step towards protein structure prediction problem. Despite all the efforts have been made so far, finding a fast and accurate computational approach to solve protein structural class prediction problem still remains a challenging problem in bioinformatics and computational biology. Results In this study we propose segmented distribution and segmented auto covariance feature extraction methods to capture local and global discriminatory information from evolutionary profiles and predicted secondary structure of the proteins. By applying SVM to our extracted features, for the first time we enhance the protein structural class prediction accuracy to over 90% and 85% for two popular low-homology benchmarks that have been widely used in the literature. We report 92.2% and 86.3% prediction accuracies for 25PDB and 1189 benchmarks which are respectively up to 7.9% and 2.8% better than previously reported results for these two benchmarks. Conclusion By proposing segmented distribution and segmented auto covariance feature extraction methods to capture local and global discriminatory information from evolutionary profiles and predicted secondary structure of the proteins, we are able to enhance the protein structural class prediction performance significantly.
View less >
View more >Background Prediction of the structural classes of proteins can provide important information about their functionalities as well as their major tertiary structures. It is also considered as an important step towards protein structure prediction problem. Despite all the efforts have been made so far, finding a fast and accurate computational approach to solve protein structural class prediction problem still remains a challenging problem in bioinformatics and computational biology. Results In this study we propose segmented distribution and segmented auto covariance feature extraction methods to capture local and global discriminatory information from evolutionary profiles and predicted secondary structure of the proteins. By applying SVM to our extracted features, for the first time we enhance the protein structural class prediction accuracy to over 90% and 85% for two popular low-homology benchmarks that have been widely used in the literature. We report 92.2% and 86.3% prediction accuracies for 25PDB and 1189 benchmarks which are respectively up to 7.9% and 2.8% better than previously reported results for these two benchmarks. Conclusion By proposing segmented distribution and segmented auto covariance feature extraction methods to capture local and global discriminatory information from evolutionary profiles and predicted secondary structure of the proteins, we are able to enhance the protein structural class prediction performance significantly.
View less >
Journal Title
BMC Genomics
Volume
15
Issue
Suppl1
Copyright Statement
© 2014 Dehzangi et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Subject
Biological sciences
Information and computing sciences
Biomedical and clinical sciences