• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Combining Classifiers Based on Gaussian Mixture Model Approach to Ensemble Data

    Thumbnail
    View/Open
    NguyenPUB82.pdf (190.9Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Nguyen, TT
    Liew, AWC
    Tran, MT
    Nguyen, MP
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Combining multiple classifiers to achieve better performance than any single classifier is one of the most important research areas in machine learning. In this paper, we focus on combining different classifiers to form an effective ensemble system. By introducing a novel framework operated on outputs of different classifiers, our aim is to build a powerful model which is competitive to other well-known combining algorithms such as Decision Template, Multiple Response Linear Regression (MLR), SCANN and fixed combining rules. Our approach is difference from the traditional approaches in that we use Gaussian Mixture Model (GMM) ...
    View more >
    Combining multiple classifiers to achieve better performance than any single classifier is one of the most important research areas in machine learning. In this paper, we focus on combining different classifiers to form an effective ensemble system. By introducing a novel framework operated on outputs of different classifiers, our aim is to build a powerful model which is competitive to other well-known combining algorithms such as Decision Template, Multiple Response Linear Regression (MLR), SCANN and fixed combining rules. Our approach is difference from the traditional approaches in that we use Gaussian Mixture Model (GMM) to model distribution of Level1 data and to predict the label of an observation based on maximizing the posterior probability realized through Bayes model. We also apply Principle Component Analysis (PCA) to output of base classifiers to reduce its dimension of what before GMM modeling. Experiments were evaluated on 21 datasets coming from University of California Irvine (UCI) Machine Learning Repository to demonstrate the benefits of our framework compared with several benchmark algorithms.
    View less >
    Conference Title
    Communications in Computer and Information Science
    Volume
    481
    Publisher URI
    http://www.icmlc.com/ICMLC/formerICMLC_2014.html
    DOI
    https://doi.org/10.1007/978-3-662-45652-1_1
    Copyright Statement
    © 2014 Springer Berlin/Heidelberg. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. The original publication is available at www.springerlink.com
    Subject
    Expert Systems
    Publication URI
    http://hdl.handle.net/10072/67141
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander