• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • "Matryoshka: A HMM Based Temporal Data Clustering Methodology for Modeling System Dynamics"

    Author(s)
    Li, C
    Biswas, G
    Dale, M
    Dale, P
    Griffith University Author(s)
    Dale, Patricia E.
    Dale, Michael B.
    Year published
    2002
    Metadata
    Show full item record
    Abstract
    This paper discusses a temporal data clustering system that is based on the Hidden Markov Model(HMM) methodology. The proposed methodology improves upon existing HMM clustering methods in two ways. First, an explicit HMM model size selection procedure is incorporated into the clustering process, i.e., the sizes of the individual HMMs are dynamically determined for each cluster. This improves the interpretability of cluster models, and the quality of the final clustering partition results. Second, a partition selection method is developed to ensure an objective, data-driven selection of the number of clusters in the partition. ...
    View more >
    This paper discusses a temporal data clustering system that is based on the Hidden Markov Model(HMM) methodology. The proposed methodology improves upon existing HMM clustering methods in two ways. First, an explicit HMM model size selection procedure is incorporated into the clustering process, i.e., the sizes of the individual HMMs are dynamically determined for each cluster. This improves the interpretability of cluster models, and the quality of the final clustering partition results. Second, a partition selection method is developed to ensure an objective, data-driven selection of the number of clusters in the partition. The result is a heuristic sequential search control algorithm that is computationally feasible. Experiments with artificially generated data and real world ecology data show that: (i) the HMM model size selection algorithm is effective in re-discovering the structure of the generating HMMs, (ii) the HMM clustering with model size selection significantly outperforms HMM clustering using uniform HMM model sizes for re-discovering clustering partition structures, (iii) it is able to produce interpretable and "interesting" models for real world data.
    View less >
    Journal Title
    Intelligent Data Analysis
    Volume
    6
    Issue
    3
    Publisher URI
    http://content.iospress.com/articles/intelligent-data-analysis/ida00093
    Subject
    Data management and data science
    Cognitive and computational psychology
    Publication URI
    http://hdl.handle.net/10072/6718
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander