MicroRNA regulation of cancer metabolism: role in tumour suppression
Author(s)
Tomasetti, Marco
Santarelli, Lory
Neuzil, Jiri
Dong, Lanfeng
Griffith University Author(s)
Year published
2014
Metadata
Show full item recordAbstract
Mitochondria are critical regulators of cell metabolism; thus, mitochondrial dysfunction is associated with many metabolic disorders, including cancer. Altered metabolism is a common property of cancer cells that exhibit enhanced capacity to 'ferment' glucose to pyruvate and then lactate, even in the presence of sufficient oxygen to support mitochondrial metabolism. Recently, it was reported that microRNAs (miRNAs) regulate important signalling pathways in mitochondria and many of these miRNAs are deregulated in various cancers. Different regulatory mechanisms can control miRNA expression at the genetic or epigenetic level, ...
View more >Mitochondria are critical regulators of cell metabolism; thus, mitochondrial dysfunction is associated with many metabolic disorders, including cancer. Altered metabolism is a common property of cancer cells that exhibit enhanced capacity to 'ferment' glucose to pyruvate and then lactate, even in the presence of sufficient oxygen to support mitochondrial metabolism. Recently, it was reported that microRNAs (miRNAs) regulate important signalling pathways in mitochondria and many of these miRNAs are deregulated in various cancers. Different regulatory mechanisms can control miRNA expression at the genetic or epigenetic level, thus affecting the biogenetic machinery via recruitment of specific transcription factors. Metabolic reprogramming that cancer cells undergo during tumorigenesis offers a wide range of potential targets to impair tumour progression. MiRNAs participate in controlling cancer cell metabolism by regulating the expression of genes whose protein products either directly regulate metabolic machinery or indirectly modulate the expression of metabolic enzymes, serving as master regulators. Thus, modulation of the level of miRNAs may provide a new approach for the treatment of neoplastic diseases.
View less >
View more >Mitochondria are critical regulators of cell metabolism; thus, mitochondrial dysfunction is associated with many metabolic disorders, including cancer. Altered metabolism is a common property of cancer cells that exhibit enhanced capacity to 'ferment' glucose to pyruvate and then lactate, even in the presence of sufficient oxygen to support mitochondrial metabolism. Recently, it was reported that microRNAs (miRNAs) regulate important signalling pathways in mitochondria and many of these miRNAs are deregulated in various cancers. Different regulatory mechanisms can control miRNA expression at the genetic or epigenetic level, thus affecting the biogenetic machinery via recruitment of specific transcription factors. Metabolic reprogramming that cancer cells undergo during tumorigenesis offers a wide range of potential targets to impair tumour progression. MiRNAs participate in controlling cancer cell metabolism by regulating the expression of genes whose protein products either directly regulate metabolic machinery or indirectly modulate the expression of metabolic enzymes, serving as master regulators. Thus, modulation of the level of miRNAs may provide a new approach for the treatment of neoplastic diseases.
View less >
Journal Title
Mitochondrion
Volume
19
Subject
Genetics
Cancer cell biology
Cancer therapy (excl. chemotherapy and radiation therapy)